

829 | P a g e

An Overview of Challenges in Software Testing

Anish Patel

Assistant Professor, Department of Computer, Seva Sadan Mahavidyalaya, Burhanpur (M.P.)

Abstract

The issue of software quality remains a significant challenge within the software industry, contributing

to substantial setbacks and, in some cases, company closures. Addressing and resolving the root causes

of these quality problems is crucial, especially given the pressure on timely product deployment. This

paper explores key challenges in software quality assurance and testing faced by small and medium-

sized software companies globally. It identifies various categories of challenges and the stakeholders

involved. Despite advancements in testing tools, elements, and processes, significant testing challenges

persist. This research highlights these challenges and suggests areas where software engineers can

focus their efforts to improve and overcome these issues.

Keywords: Software Quality Assurance (SQA), Testing, Resources, Challenges, Software Companies,

Developers.

I. Introduction

Software Quality Assurance (SQA) plays a crucial role in ensuring the quality of software by

integrating a range of activities to establish, maintain, and verify processes, procedures, and standards

suited to a project. It operates concurrently with the software development process, aiming to enhance

the development methodology to prevent significant issues before they arise. SQA functions as a

comprehensive activity that spans the entire software lifecycle. Given the pervasive nature of software

in daily life, failures can have serious repercussions, particularly in safety-critical applications and

business operations. For instance, Ashton-Tate, once a leading software company, ceased to exist due

to quality issues with its software.

Testing is a fundamental aspect of ensuring quality and is a significant part of quality management. It

is a costly endeavour, with estimates indicating that up to 80% of software development costs are

allocated to identifying and fixing defects (ETH Zurich, 2010). To address these costs, various tools

and techniques have been developed to enhance the testing process. This research examines the

challenges faced in software quality assurance and testing, focusing on procedural, programming, and

830 | P a g e

managerial issues. It traces these challenges from the initial stages where defects first appear to the

final stages of development.

The study emphasizes the importance of improving the software engineering knowledge base to

address SQA challenges and highlights the financial implications of late defect detection and

resolution. A detailed analysis of the cost associated with testing is provided, including a table of data

to illustrate these expenses. The aim is to evaluate whether the costs associated with testing reflect

challenges that need to be addressed to enhance the cost-effectiveness of testing practices within

software development firms.

A recent report by the National Institute of Standards and Technology estimated that software failures

cost the U.S. economy approximately $59.5 billion annually, which equates to about 0.6% of the Gross

Domestic Product. The report indicated that more than a third of these costs, around $22.2 billion,

could potentially be avoided with improved testing infrastructure that allows for earlier and more

effective defect detection. Currently, over half of software errors are detected late in the development

process or during post-sale usage.

The increasing complexity of software systems has exacerbated the challenge of testing, making it

increasingly expensive and resource-intensive. Software testing, which typically involves generating

test inputs, executing tests, and verifying outcomes, becomes more challenging as software systems

grow in size and complexity. The cost of testing accounts for roughly 50% of software development

expenses. Effective test case design is crucial but increasingly difficult to achieve manually for

complex systems. Although automated testing can reduce manual effort, existing techniques often

require specific inputs that may not always be available.

This study explores the challenges faced by software companies in quality assurance and testing. It

emphasizes that while testing is a critical part of the development process, it must be integrated into

all phases of development rather than being treated as a separate activity. The research presents updated

strategies for addressing software testing challenges and offers recommendations for best practices. It

underscores that modern software testing is an integral part of the entire development process, not

merely a final-stage activity. Effective testing requires optimal resource utilization to ensure a high-

quality end product, taking into account the fixed parameters of resources, time, and scope.

This paper is based on a study conducted in the Information Technology industry from February 2016

to December 2016, aiming to provide valuable insights and recommendations for improving software

testing practices.

831 | P a g e

II. Key Challenges in Software Testing

2.1 Testing the Entire Application

Testing a complete application in its entirety is often impractical due to the vast number of possible

test combinations. Attempting to cover every potential scenario can be time-consuming and may delay

the product's release. As a result, prioritizing test cases based on risk and impact becomes essential.

2.2 Interaction with Developers

Managing relationships between testers and developers can be challenging. Conflicts may arise when

testers and developers disagree on issues or test results. Effective communication, problem-solving

skills, and the ability to analyze and address disagreements constructively are crucial for resolving

such conflicts and maintaining a positive working environment.

2.3 Regression Testing

As a project evolves, regression testing can become overwhelming. Ensuring that new changes do not

adversely affect existing functionalities requires extensive effort. The challenge lies in balancing the

management of changes with the need to track and address bugs in previously tested features.

2.4 Time Constraints in Testing

When faced with tight deadlines, there is a tendency for testers to focus more on completing tasks

rather than on the quality of the product. Meeting deadlines can sometimes compromise the

thoroughness of testing. It is crucial to strike a balance between speed and quality to ensure that critical

quality tasks are not overlooked.

2.5 Understanding Requirements

Effective testing relies heavily on a clear understanding of the requirements. Testers who do not fully

grasp the requirements may struggle to conduct comprehensive tests. Good listening skills and the

ability to interpret requirements accurately are essential for successful testing.

2.6 Deciding When to Stop Testing

Determining the right point to stop testing can be challenging. Skilled testers need to evaluate the

testing processes and their importance to make informed decisions about when to conclude testing.

This decision involves balancing the need for thoroughness with practical constraints.

III. Categories of Challenges in Software Quality

In my experience working with various local and international software companies, I have identified

several categories of challenges impacting software development. These challenges are grouped into

832 | P a g e

three main categories, each encompassing multiple specific issues. These challenges can directly or

indirectly affect a software company's overall productivity and growth:

1. Procedural Challenges: These involve difficulties in implementing and adhering to testing

procedures and methodologies. Inadequate processes or inconsistent application of procedures

can hinder effective quality assurance.

2. Programming Challenges: These include issues related to coding practices, such as defects in

code, integration problems, and difficulties in managing code changes. Such challenges can

impact the stability and performance of the software.

3. Managerial Challenges: These pertain to issues in managing testing activities, including

resource allocation, prioritization of testing tasks, and balancing quality with deadlines.

Effective management is essential to address these challenges and ensure successful software

quality assurance.

3.1 Software Requirement Challenges

Clients are increasingly focused on software quality, but quality issues often begin with the collection

of software requirements. Problems such as improper collection methods, incomplete or unclear

requirements, insufficient time allocated for gathering requirements, and a lack of commitment can all

contribute to quality failures. A primary challenge is ensuring that requirements are gathered correctly

and in a timely manner (Teodoro, 2009).

Sometimes, those responsible for gathering requirements may neglect the crucial processes of

elicitation and validation. In some organizations, there might not be dedicated personnel for

requirement collection; instead, programmers or other staff members may handle this task, often

leading to unstructured and incomplete requirements. This oversight can adversely affect the entire

development lifecycle.

It is perplexing why such critical aspects of requirements collection are often mishandled, despite their

importance. Observations over the past 15 years reveal several issues that are not always documented

in literature or reports. For instance, in-house software development frequently encounters challenges

with requirements that change unexpectedly, leading to logical and functional errors due to missed or

incorrectly implemented requirements. These issues contribute to diminished software quality.

3.2 The Requirements Collection Period

The period during which requirements are collected is crucial. Incomplete requirements collection can

adversely affect subsequent project phases. Projects can fail if the requirements are not clearly defined

from the outset. Often, requirements collectors may bypass certain requirements if they are deemed

833 | P a g e

out of scope, too complex, or time-consuming. This avoidance can occur unconsciously, where

Software Requirements Engineers (SREs) might inadvertently neglect to capture all client needs.

Clients may also contribute to this issue by providing requirements incrementally, starting with a

prototype and then supplying additional requirements or changes as needed. This approach can lead to

gaps in requirements and, consequently, impact software quality. Both the requirements collectors and

the clients share responsibility for these quality issues.

IV. Stakeholder Perspectives on Challenges

In this study, I aimed to identify the reasons behind software quality issues and the key stakeholders

responsible for these problems (Jeff, 2005). I found that various stakeholders, including software

requirement engineers and clients, significantly impact software quality. For example, some users may

resist adopting new software or abandoning legacy systems, leading to non-cooperation and provision

of incorrect requirements, which ultimately affects software quality and project success. Based on my

observations, I have categorized these stakeholder-related challenges into four main types:

4.1 Developer/Programmer Challenges

Developers often face several obstacles related to software quality assurance and testing. My analysis

reveals that developers frequently prioritize completing coding tasks over performing basic quality

checks, including unit testing. This tendency, coupled with overconfidence, can result in a lack of

thorough testing before release. Developers working under pressure may only conduct minimal

functional testing and may not allocate sufficient time for comprehensive quality assurance.

Additionally, some programmers may lack a foundational understanding of Software Quality

Assurance (SQA) and the Software Development Life Cycle (SDLC), particularly if their background

is in non-technical fields. They might have received only brief training in specific programming

languages, which can lead to poor coding practices and subsequent software quality issues.

4.2 Company-Level Risks

Software companies often face pressures to meet tight deadlines, leading to insufficient time allocated

for thorough testing. Some companies may opt to defer comprehensive testing until later stages, such

as during the support and maintenance phase or the next release cycle. Furthermore, smaller firms or

private companies with in-house development teams might not have dedicated SQA departments or

quality assurance engineers, reflecting a lack of emphasis on quality assurance.

4.3 Client-Side Threats

Clients frequently focus on minimizing costs, often perceiving that higher-quality software will come

with a higher price tag. In many cases, clients request software that meets only their basic needs and

834 | P a g e

are less concerned with achieving high quality. This mind-set is especially common in developing

countries, where clients may intentionally downplay the importance of quality assurance (Ricardo,

2007).

4.4 Vendor Negligence

Vendor negligence can also adversely affect software quality. Third-party implementation vendors

might rush to complete projects, opting for quick fixes that can introduce future problems and require

substantial rework. Discrepancies between software and current business processes can lead to

operational issues. For example, an Oracle E-Business Suite implementation project faced difficulties

in meeting deadlines and budget constraints due to vendor-related challenges.

V. Where Does Software Quality Suffer?

Determining why and where software quality suffers is essential for improving software development

practices. Effective software quality assurance should be integrated from the project's inception

through to its completion. Key phases where quality issues may arise include project planning,

budgeting, and requirements gathering. According to a survey by Testplant’s Application Crisis

Research, 70% of businesses report feeling pressured to innovate, with about half releasing software

without adequate testing and 40% releasing software with no testing at all (John, 2017).

Key areas where software quality may suffer include:

• Objective and Scope: Misalignment in objectives and scope can lead to quality issues.

• Business Value and Cost/Benefit Analysis: Inadequate analysis can impact the project's

success.

• Estimation: Poor estimation practices can affect project timelines and resources.

• Requirements: Incomplete or incorrect requirements can cause significant quality problems.

• Design and Coding: Deficiencies in design and coding can propagate defects.

• Testing: Insufficient or ineffective testing can fail to identify critical issues.

• Integration: Integration issues can affect overall system functionality.

• Implementation: Problems during implementation can impact the final product’s

performance.

• Training: Inadequate training can affect the effective use of the software.

• Change Management: Poor change management can lead to instability and quality issues.

VI. Barriers to Effective Testing

Despite diligent efforts and the benefits of an agile approach, Quality Assurance (QA) teams often

receive tasks for testing only at the last moment or at the end of a sprint. To ensure a high-quality

835 | P a g e

application, there are strategies that can be employed even when time is tight. Ideally, while waiting

for a testable version of a feature, QA should use this period to thoroughly understand the feature,

review any available documentation, and consult with relevant members of the product and

development teams. This preparation allows QA to develop comprehensive test cases and to be ready

for execution once the feature is delivered. Effective use of the waiting period involves formulating a

detailed testing strategy and documentation.

Regarding supporting documentation, the quality and completeness of such materials can vary

significantly. While most organizations require functional, non-functional, and technical

specifications, these documents might not always provide all the necessary information for thorough

testing. A proactive tester will seek additional details beyond what is provided in the documentation

to fully comprehend the feature and ensure that all aspects are tested effectively.

VII. Conclusion

This paper aims to highlight the challenges associated with Software Quality Assurance (SQA), the

financial impacts of quality failures, and their effects on company growth, while also proposing

solutions to address these issues. The research identifies key challenges faced by software companies

and offers solutions to mitigate these problems. Despite the software industry's extensive history of

over 70 years, many companies struggle to maintain consistent success. While some firms have

achieved significant milestones with large projects, they often face difficulties in sustaining success

and profitability over time. Some companies experience fluctuations in project volume and revenue,

with occasional periods of financial loss or even closure.

The reasons for these challenges are multifaceted and represent significant concerns for the software

industry. Understanding why companies fail to achieve consistent returns on investment (ROI) is

crucial. Although this research has identified root causes and suggested solutions based on established

software engineering practices, the scope was limited due to constraints in time and resources.

To improve productivity, quality, and reliability in software products, it is essential for companies to

focus on quality assurance. This paper aims to assist the software industry in its ongoing efforts to

enhance its business processes and address quality issues. The ultimate goal is to increase stakeholder

awareness and ensure that software quality is given the highest priority, as this is critical for both

company profitability and stakeholder benefits. Addressing these quality issues and promoting

awareness among all stakeholders is vital for the continued success and growth of the software

industry.

836 | P a g e

References

• Beizer, B. (1995). Software Testing Techniques. Van Nostrand Reinhold.

• Black, R. (2009). Managing the Testing Process. Wiley.

• Boehm, B. W. (2006). A Spiral Model of Software Development and Enhancement. ACM

SIGSOFT Software Engineering Notes.

• Boehm, B. W., & Turner, R. (2003). Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley.

• Dorfman, M. & Thayer, R. H. (1990). Software Engineering: Principles and Practice. Wiley.

• ETH Zurich (2010). Software Engineering Cost Analysis.

• IEEE (2010). IEEE Standard for Software and Systems Test Documentation. IEEE Std 829-2008.

• John, S. (2017). Application Crisis Research: The Cost of Testing. Testplant.

