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ABSTRACT 

Evaluating the dynamic properties of soil is an essential step for solving Geotechnical Engineering problems. 

Dynamic properties like shear modulus and damping ratio are required to estimate the response of soil and soil-

structure systems when subjected to cyclic and dynamic loadings and machine vibration. In recent years, 

intelligent models for solving geotechnical problems have received considerable attention, and Intelligence 

systems have been used in many areas of Geotechnical Engineering applications. This study uses an Artificial 

Neural Network (ANN) to predict the dynamic properties like shear modulus and damping ratio of rubber-mixed 

sand. The inference system will be employed to predict the Dynamic properties of the soil samples as an alternative 

to lengthy laboratory testing. The database used for the model development is generated by collecting data from 

the published literature. The most important factors that affect dynamic properties are considered for the 

development of the model, and sensitivity analysis was performed using the connection weight approach to identify 

the critical influencing parameter. 

Keywords- Artificial Neural Network (ANN), Damping ratio, Intelligence systems, Sensitivity 

analysis, Shear modulus. 

1. Introduction 

It is well known that Geotechnical engineers rely on evaluating dynamic soil properties to design structures, as 

they significantly impact the soil's response to dynamic loads like earthquakes and vibrations. Dynamic properties 

play a crucial role in soil-structure interaction analysis and in designing resilient and stable structures that can 

withstand dynamic loads. Dynamic soil properties like shear modulus and Damping ratio are used in geotechnical 

engineering for predictive modelling, enabling engineers to simulate soil behaviour under various loading 

conditions [1]. Numerous researchers have used various experimental methods to examine the dynamic behaviour 

of soils [2-11], while some researchers have undertaken experiments to determine the dynamic properties of 

rubber-mixed soils [12-16]. 
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Advancements in artificial neural network (ANN) modelling have recently emerged as a promising method for 

predicting sand's shear modulus and damping ratio [17-20]. Artificial neural networks (ANNs) can capture 

intricate nonlinear connections and patterns within extensive datasets. This makes them very suitable for 

modelling the behaviour of granular materials such as sand [21]. While few investigations were conducted on 

strength-reinforced soils to predict their dynamic properties, numerous researchers developed equations for 

predicting these properties by employing intelligent models [18-20]. 

This work focuses on developing a model for rubber-mixed sand to accurately predict its dynamic properties, such 

as shear modulus and damping ratio. Accurately determining rubber-mixed sand's shear modulus and damping 

ratio is of utmost importance in geotechnical engineering. This has significant implications for various 

applications, including earthquake engineering, pavement design, and foundation building. Traditional methods 

for determining these parameters often involve extensive laboratory testing, which can be time-consuming and 

costly [21]. To overcome these limitations, researchers have turned to artificial neural networks (ANNs) as a 

promising tool for predictive modelling in geotechnical engineering [22-26]. 

 

This paper assesses the effectiveness of a neural network method employing Bayesian regularisation in 

determining dynamic parameters such as shear modulus and damping ratio. Multiple endeavours were undertaken 

to devise the most optimal neural network structure. The model was trained with the percentage of sand, rubber, 

and confining pressure along with the shear modulus and damping ratio. The developed ANN model can predict 

the shear modulus and damping ratio with fewer parameters than the conventional formula. 

 

2. Artificial Neural Network 

An artificial neural network (ANN) is a processing device, such as hardware or an algorithm, whose architecture 

is inspired by the structure and operations of human brains. Many artificial neurons, or basic processing units, 

comprise an ANN system. Artificial Neural Networks (ANNs) are numerical modelling, presenting, and 

processing frameworks that are especially helpful for information expectation and anticipation in complex settings 

[24]. 

 The fact that the artificial neural system may be thought of as a nonlinear discovery model is remarkable. Because 

Artificial Neural Networks (ANNs) only link inputs with output parameters, their popularity has skyrocketed in 

recent years. 

 Artificial Neural Networks are modelled after human brains. The human brain is made up of biological neurons 

shown in “Fig 1” that use axon terminals to interpret information supplied to them from various sources [21]. In 

the same way, artificial neurons replicate the key features of neural networks.  
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Figure 1: Biological Neuron 

 
 

Figure 2: Artificial Neural Network 

                               

3. Model development in ANN for rubber-mixed sand 

Model development includes several sections, each section will be explained in the following sections 

3.1 Data Collection and Analysis 

The published literature is the data source used in this study to build the model. Shear modulus, damping ratio, 

confining pressure, rubber percentage, and sand percentage are all included in the database. Sand percentage, 

rubber percentage, confining pressure, and shear modulus are input parameters, and damping ratio and shear 

modulus are regarded as output parameters based on the data collected. Of the 84 data points in this study, 25 

were used for testing and validation, while 59 were used for training. Several techniques are employed to enhance 

the generalisation of the created ANN model, and several efforts are performed to obtain the intended result. 

Bayesian regularisation is one such algorithm. In the case of Bayesian regularisation, the weight values have been 

automatically regularised to minimise the combined error function [27]. NNTool Box in MATLAB has been 

utilised to implement the Bayesian regularisation approach. 

 

 

 

 



 
 

120 | P a g e  
 

Table 1: Input and output parameters 

Input parameters Output parameters 

Confining pressure (CP) Shear modulus (G) 

Sand% (s) Damping ratio (D) 

Rubber(R)  

 

3.2 Data Division 

 

Data division in artificial neural networks (ANNs) involves splitting a dataset into subsets for training, validation, 

and testing. These subsets have distinct purposes in the ANN's training and evaluation. The following data division 

is considered for the model development. 

 

 

 

Figure 3: Data Division 

3.3 ANN Architecture 

The structure of the neural network for the model is obtained by representing the Input, hidden, and output layers. 

The selection of hidden layers should follow the equation below for the best model performance. 

Check For Hidden Neurons: 

 [(M*N) +(N*K)) +(N+K)] < No of Data samples 
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Figure 4: Structure of Neural Network 

The data used for the model development, including the inputs, hidden layer, and output layer, are represented 

below. 

 

              

 

 
 

 [(M*N) +(N*K)) +(N+K)] < No of Data samples 

    

  [(3*N) +(N*2)) +(N+2)] < 84 

               

  In this case, four hidden neurons are considered (N = 4) 

  26 < 84 

  Therefore satisfied. 

 

3.4 Network Analysis 

Network Analysis of Neural Networks consists of information related to the Weights and Biases; in a neural 

network, biases and weights collectively define the network's parameters. 

 

Network analysis is more important for performing sensitivity analysis and for better understanding the structure. 

Weights and biases are taken from the NNtool, and the values taken are tabulated in the following table. 

 

 

 

 

 

No of Inputs=3 =M 

No of Hidden Neurons = 4 = N 

No of Outputs = 2 =K 

No of Data samples = 84 
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Table 2: Data for weights and biases 

   Neuron 

 

Weights (W ik) 

 

Biases 

Input - 1 Input - 2 Input - 3 Output-1 Output-2 

 

𝑏ℎ𝑘 

 

𝑏0 

Hidden neuron 1 

(k=1) 

0.39 -0.08 0.08 0.048 -0.41 0.14 -0.05 

Hidden neuron 2 

(k=2) 

-0.11 0.01 -0.001 -0.01 0.11 -0.02 -0.20 

Hidden neuron 3 

(k=3) 

0.21 -0.02 0.02 0.02 -0.21 0.05 _ 

Hidden neuron 4 

(k=4) 

0.18 0.5 0.54 -0.08 0.56 -0.01 _ 

 

3.5 Neural Network Interpretation Diagram 

 

The present model consists of three input parameters, namely confining pressure(σ), sand%, and Rubber%, along 

with four hidden layers and two output parameters: shear modulus(G) and Damping ratio (ζ). Values between the 

input layer -hidden layer and hidden layer - output layer represent weights used to develop equations. 

 

Figure 5: Neural Network Interpretation diagram for cohesionless soil 

3.6 Development of ANN model equation 

𝜙𝑟𝑛 = 𝑓𝑠𝑖𝑔{𝑏0 + ∑  ℎ
𝑘=1 [𝑤𝑘 × 𝑓𝑠𝑖𝑔(𝑏ℎ𝑘 + ∑  𝑚

𝑖=1 𝑤𝑖𝑘𝑋𝑖)]} (1)[27]. 

𝐴1 = 0.14 + 0.39Cp − 0.08SA + 0. O8R  

𝐴2 = −0.02 − 0.11CP + 0.01SA − 0.01𝑅  

𝐴3 = 0.05 + 0.211CP − 0.02SA + 0.02𝑅  
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𝐴4 = −0.01 + 0.18CP + 0.54SA − 0.54R  

 

For output-1 

 

𝐵1 = 0.04 ×
𝑒𝐴1 − 𝑒−𝐴1

𝑒𝐴1 + 𝑒−𝐴1
 

𝐵2 = −0.01 ×
𝑒𝐴2 − 𝑒−𝐴2

𝑒𝐴2 + 𝑒−𝐴2
 

𝐵3 = 0.02 ×
𝑒𝐴3 − 𝑒−𝐴3

𝑒𝐴3 + 𝑒−𝐴3
 

𝐵4 = −0.08 ×
𝑒𝐴4 − 𝑒−𝐴4

𝑒𝐴4 + 𝑒−𝐴4
 

 

𝐶1 = −0.05 + 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 

 

 

For output-2 

 

𝐵1 = −0.41 ×
𝑒𝐴1 − 𝑒−𝐴1

𝑒𝐴1 + 𝑒−𝐴1
 

 

𝐵2 = 0.10 ×
𝑒𝐴2 − 𝑒−𝐴2

𝑒𝐴2 + 𝑒−𝐴2
 

 

𝐵3 = −0.21 ×
𝑒𝐴3 − 𝑒−𝐴3

𝑒𝐴3 + 𝑒−𝐴3
 

 

𝐵4 = 0.56 ×
𝑒 𝐴4 − 𝑒−𝐴4

𝑒𝐴4 + 𝑒−𝐴4
 

 

 

𝐶1 = −0.20 + 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 

 

𝜙𝑟𝑛 =
𝑒𝐶1 − 𝑒−𝐶1

𝑒𝐶1 + 𝑒−𝐶1
 

 

𝜙r = 0.5(𝜙rn + 1)(𝜙r𝑚𝑎𝑥 − 𝜙r𝑚𝑖𝑛) + 𝜙r𝑚𝑖𝑛 . 

 

Where, 𝜙r𝑚𝑎𝑥  and 𝜙r𝑚𝑖𝑛  are  the maximum and minimum values of 𝜙r respectively in the data set. 

4. Results and Discussions 

This section comprises results from the model development and sensitivity analysis section 4.1 deals with the 

results obtained from NNTool Box and section 4.2 deals with the results obtained from the sensitivity analysis 
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4.1 Model development in ANN for rubber-mixed sand 

The result obtained from the development of the model is presented below 

4.1.1 coefficient of correlation values of training and test data  

The developed model provides results that consist of Training, and testing with a coefficient of correlation, and 

the following figure shows results obtained from the NNtool. 

 

Figure 6: Results from NNtool 

 

4.1.2 Best training performance is achieved with the minimum Mean Squared Error (mse): 

 

Figure 7: Mean Squared Error from NNtool 
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4.1.3 overall coefficient of correlation and coefficient of determination for the predicted model 

4.1.3.1 overall coefficient of correlation 

The coefficient of correlation (R) value is obtained for the training, testing, and validation data sets along with all 

datasets which, are represented as All: R=0.956 

 

Figure 8: coefficient of correlation 

4.1.3.2 Coefficent of determination 

Data sets containing data of measured shear modulus and predicted shear modulus are taken from the NN-tool, 

and obtained data (predicted data) is used to find the coefficient of determination; similarly, prediction of damping 

ratio values is used for finding the coefficient of determination 

 

Figure 9: Predicted vs measured shear modulus 
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Figure 10: Predicted vs measured damping ratio 

 

4.2 sensitivity Analysis 

Sensitivity analysis is a valuable technique employed in Artificial Neural Networks (ANNs) to assess how 

variations in input variables affect the network's predictions or output. Sensitivity analysis aims to identify the 

specific variables that exert the most significant influence on the model's performance and gain insights into their 

relative importance. 

4.2.1 Importance factor for shear modulus 

Network Analysis plays a crucial role in developing an equation; similarly, it also plays a major role in sensitivity 

analysis. Values between the connections are treated as weights and biases, and these connections are used to find 

the importance factor.    

 

Figure 11: Importance factors for shear modulus 

The importance factor is obtained from the connection weights. Using the Input, hidden layer, and output layer 

connection, the product of connection weights will be taken there using the connection weight approach. The 
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sensitivity of input parameters is decided. The following table shows the importance of input parameters in 

predicting output 

Table 3: Sensitivity analysis for shear modulus 

 

 

 

 

 

 

 

4.2.2 Importance factor for Damping ratio 

Similar to the importance factors considered for shear modulus, same for the damping ratio is also considered 

here. The product of connection weight is done using damping ratio outputs. Therefore, important factors are 

considered when predicting the damping ratio.   

 

Figure 12: Importance factors for input parameters 

Table 4: Sensitivity Analysis for Damping Ratio 

 

 

 

 

 

 

 

Parameters 

Connection weight Approach 

Importance factor Ranking of input as per relative importance 

Confining Pressure 0.01 3 

Sand 0.04 2 

Rubber 0.05 1 

Parameters 

Connection weight Approach 

Importance factor Importance factor 

Confining 

pressure 
0.118 3 

Sand 0.264 2 

Rubber 0.347 1 



 
 

128 | P a g e  
 

5. Conclusions 

Based on statistical parameters and correlation coefficients for training and testing data sets, the optimal model is 

the ANN model equation developed with confining pressure and percentages of sand and rubber as input 

parameters. Based on the ANN's training weights, a model equation is generated. The connection weight method 

sensitivity study revealed that the percentage of rubber is critical in achieving the intended results. 

The current study's results demonstrate the effectiveness of the ANN approach as a powerful tool with enormous 

potential for predicting soil's dynamic properties. Additionally, this study discovered that a Bayesian 

regularization artificial neural network may successfully generate a data-driven prediction of the dynamic 

properties of rubber-mixed sand with a nonlinear reliance on its governing parameters. An ANN-based method 

like this will offer a dependable and affordable tool for predicting the dynamic properties of rubber-mixed sand. 
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