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Abstract 

The theory of Thermoelasticity and wave propagation play a crucial role in many geophysical 

applications, including oil drilling, gas hydrate detection, seismic monitoring, and hydrogeology etc. 

Seismic wave propagation in porothermoelastic solid has been the subject of explorations by many 

analyzers in different fields like earth sciences, geophysics, earthquake engineering etc. One of the 

most prominent ways of information about interior of earth is called seismic activity. Seismic activity 

is also helpful in the study and prediction of earthquake and tsunamis. In the present work we offer an 

analysis of the most popular studies that describe basics of thermoelasticity and wave propagation. 
 

Introduction 

The dynamical equations formulated by Biot [1] have been serving as a basis to study 

wave propagation problems in poroelastic media.  Green et al. [2] investigated thermoelastic material 

behavior in the absence of energy dissipation using both nonlinear and linear theories. They also 

investigated linearized thermoelasticity, which has the following properties: (i) unlike classical 

thermoelasticity, which is characterized by the Fourier law, the heat flow does not involve energy 

dissipation; (ii) a constitutive equation for an entropy flux vector is determined by the same potential 

function that also determines the stress; and (c) it allows heat to be transmitted as thermal waves at 

finite speed. In addition, a generic uniqueness thesis for linear thermoelasticity without energy 

dissipation is established. Fox, N [3] proposed a generalization of thermoelasticity based on a 

physically motivated modification to Fourier's law of heat conduction. Constitutive equations that are 

valid for finite deformations and temperature variations are postulated and then reduced to canonical 

form using conventional nonlinear continuum mechanics techniques. To illustrate novel aspects of the 

nonlinear theory, exact solutions are provided. In order to create a generalized dynamical theory of 

thermoelasticity, Lord et al. [5] used a form of the heat transport equation that takes into account the 

time required for the heat flow to accelerate. The theory accounts for the temperature-strain rate 

coupling; however the resulting coupled equations are both hyperbolic. As a result, the existing 

coupled theory of thermoelasticity no longer contains the dilemma of an infinite velocity of 

propagation. With the use of the generalized theory, a solution is discovered that compares favorably 
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to one already discovered using the traditional coupled theory. A theory of wave propagation in 

isotropic poroelastic media saturated by two immiscible Newtonian fluids has been investigated by 

Tuncay et al. [7]. By volume averaging the microscale balance and constitutive equations and 

assuming modest deformations, the macroscopic constitutive relations, as well as the mass and 

momentum balance equations, are produced. When Darcy's law is assumed to be true, the momentum 

transfer terms are described in terms of intrinsic and relative permeabilities and compare favorably to 

a known solution obtained using the conventional coupled theory. In a novel way, the coefficients of 

macroscopic constitutive interactions are stated in terms of measurable quantities. The hypothesis 

proves that there are three compressional waves and one rotational wave. The third compressional 

wave is dependent on the slope of the capillary pressure-saturation relation and is connected to the 

pressure differential between the fluid phase and solid phase. In the present study, we employ the 

volume-averaging technique to investigate the wave propagation properties of a linearly elastic porous 

medium saturated with two immiscible Newtonian fluids.  

Wang et al.[9]  provided a set of generalized thermo-poroelasticity equations. The LS and GL theories 

are represented by the equations, depending on certain relaxation times. By modifying the two 

Maxwell-Vernotte-Cattaneo relaxation times in the heat equation, they additionally tackle the 

generalization of the original LS theory. The related plane-wave analysis is carried out to demonstrate 

the velocity and attenuation differences between the LS and GL theories. Next, we construct an 

algorithm to simulate wave propagation. The algorithm computes waveforms and snapshots that show 

how waves propagate across various thermo-poroelastic media. They used a direct-grid method in this 

algorithm. 

Carcione at al [10] provided a numerical technique for simulation of wave propagation in linear 

thermoelastic media. This algorithm is based on an extended Fourier law of heat transport and is 

analogous to the Maxwell model of viscoelasticity. A grid approach that is based on the Fourier 

differential operator is used to compute the wave field, and two time-integration procedures are used 

to cross-check the results of the analysis. Because the existence of a slow quasi-static mode, also 

known as the thermal mode, renders the differential equations rigid and unstable for explicit 

timestepping methods, initially, a second-order time-splitting approach is used to solve the unstable 

component analytically, and a Runge-Kutta method is used to solve the regular equations. In contrast, 

a first-order explicit Crank-Nicolson algorithm produces more dependable results for low thermal 

conductivity values. The accuracy of these two time-stepping techniques is second and first-order, 

respectively. In the calculation of the spatial derivatives, the Fourier differential offers spectral 

accuracy. The model predicts three propagation modes: a fast compressional or (elastic) P wave, a 

slow thermal P diffusion/wave (the T wave), which resemble the fast and slow P waves of 

poroelasticity, respectively, and a shear wave. When the thermal conductivity is low, the thermal 



 
 

46 | P a g e  
 

mode is diffuse, and when it is high, the mode is wave-like. The wavefront of the fast P wave is 

defined by three velocities: the isothermal velocity in the uncoupled case, the adiabatic velocity at low 

frequencies, and a higher velocity at high frequencies. 

Wanting, et al.[11] discussed on Characteristics of wave propagation in thermoelastic medium. The 

propagation of seismic waves is significantly influenced by the thermoelastic properties in this 

medium. Theoretically, the fast longitudinal wave, the slow longitudinal wave (also known as the 

thermal wave for short), and the transverse wave would all propagate in the thermoelastic medium 

according to the Lord-Shulman hyperbolic coupled thermoelastic equation with a relaxation time 

correction term. The transverse wave is unaffected by the thermal properties of the medium, while the 

first two longitudinal waves are thermal dissipation attenuation waves. They analyzed the effects of 

changes in thermal conductivity, thermal expansion coefficient, and specific heat on wave velocity 

and attenuation, using a combination of plane wave dispersion analysis and Green's function 

numerical simulation to study the dispersion and attenuation characteristics of two thermal dissipation 

attenuating waves. Thermal conductivity has been found to be the primary factor in determining 

crucial changes in wave velocity and attenuation. Research has demonstrated that the crucial 

variations in wave velocity and attenuation are determined mostly by thermal conductivity. The 

amplitude of wave velocity and attenuation is significantly impacted by the thermal expansion 

coefficient. The first two thermoelastic coefficients are accounted for in the specific heat. Finally, the 

wave field snapshots are simulated using the second-order Green's function in the frequency domain 

of thermoelastic dynamics to demonstrate the behavior of longitudinal, transverse, and thermal waves 

during propagation in the thermoelastic medium. 

Again Wanting, et al [12] represented another theory on thermoelastic waves. Unlike the traditional 

forward-modeling algorithms, they have used a unique finite-difference (FD) solver of the Lord-

Shulman thermoelasticity equations to generate synthetic seismograms that account for the effects of 

the thermal characteristics (expansion coefficient, thermal conductivity, and specific heat). Since the 

differential equations become rigid and unstable when explicit time-stepping is used due to the 

presence of a sluggish quasistatic mode (the thermal mode), they resort to a time splitting approach. 

The spatial derivatives are calculated using a rotational staggered-grid FD approach, and the waves 

are absorbed at the boundaries using an unsplit convolutional perfectly matched layer for best 

performance at the grazing incidence. An analysis of the algorithm's stability under modeling 

conditions is performed. An attenuation of both the rapid P-wave (and E-wave) and the slow thermal 

P-wave (or T-wave) is shown by the numerical experiments, illustrating the impacts of the 

thermoelasticity features. Both the fast and slow P-waves in poroelasticity have features with these 

propagation modes. In terms of elastic waves, the thermal expansion coefficient significantly affects 

both velocity dispersion and attenuation. The T mode takes on a wave form at high thermal 
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conductivities and high frequencies due to the thermal conductivity's effect on the relaxation period of 

the thermal diffusion process. 

Sharma, at el [13] used Biot’s theory to study the propagation of plane-harmonic seismic waves in a 

transversely isotropic liquid-saturated porous solid. They also analyses the presence of three more 

quasi waves, in addition to SH waves, and provide analytical expressions for their propagation 

velocity. Existing waves have been observed to have velocities that change depending on the direction 

of propagation. It has been determined how Rayleigh-type surface waves travel along the free surface 

of transversely isotropic liquid-saturated porous solids, and the corresponding frequency equation has 

been derived. Numerical considerations have been given to analyze the Role of elastic constants in the 

existence of body waves and Rayleigh waves with real velocities. It has been shown that the 

propagation velocities vary depending on the direction of the wave 

 For simplifying the difficulties of seismic wave reflection and refraction at the interface ,it is 

commonly assumed that the interface between two elastic half-spaces is welded. However, the 

welding contact at the interface may be compromised by the presence of liquid in the porous skeleton. 

The two media are probably very loosely bound together by a very small layer of viscous liquid at the 

interface.  By recalling this Vashisth et al [14] studied the problem of reflection and transmission of a 

plane periodic wave incident on the loosely bonded interface between elastic solid and a liquid-filled 

porous solid. They assumed that the interface oversees like a dislocation, preserving stress continuity 

but permitting a limited amount of slip and normal displacement is continuous and shearing stress is 

related to slip velocity. 

Energy ratios are determined numerically for a certain model and plotted for various degrees of 

bonding. The results for a welded contact and a smooth interface are obtained as particular cases .It is 

found that there is a dissipation of energy at a loosely bonded interface except for normal and grazing 

angles of incidence. This problem may also be useful to study the phenomena taking place in cracked 

materials (Griffith 1920) as well as to detect cracks in solids by non-destructive testing. Though 

ultrasonic techniques are extensively employed, the theoretical problem of reflection and refraction of 

plane harmonic waves at a loosely bonded interface between two such solid half-spaces does not seem 

to have been studied so far. 

Sharma [15] Biot's theory of wave propagation in saturated porous solids has been amended to 

examine thermoelastic wave propagation in poroelastic medium. In this context, plane harmonic 

waves travelling through an isotropic poroelastic media are taken into account Wave-induced 

temperature in the medium, fluid and solid particle displacements, and their relations are derived.. 

Both the temperature and the thermoelastic coupling parameters are used to adapt the resulting 

Christoffel equations. These equations describe the presence and movement of four waves through a 

given medium. One is a non-attenuating transverse wave, and the other three are attenuating 
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longitudinal waves. The transverse wave is unaffected by the medium's temperature. For a numerical 

simulation of liquid-saturated sandstone, the velocities and attenuation of the longitudinal waves are 

calculated. Numerical examples are shown to illustrate how these longitudinal waves change 

depending on both thermal and poroelastic parameters. 

M D Sharma [17] studied "Wave propagation across the boundary between two dissimilar poroelastic 

solids. In this context two dissimilar isotropic porous media are taken in welded contact at a plane 

interface between them. At the interface of two solids, a new parameter is introduced to indicate the 

potential strength of connections between the surface pores of the two solids. Need for continuity at 

the shared boundary is illustrated by describing many distinct sets of boundary conditions. At the 

porous-porous interface, we derive a set of boundary conditions to describe the partial coupling of 

surface pores. An imperfect bond can form between two saturated porous substances on the basis of 

such a partial connection. The tangential sliding that represents the flaw in the welded bonding at the 

planar interface causes some of the strain energy to be lost. In a porous, isotropic, fluid-saturated 

medium, there are three sorts of waves that can travel through it. When a wave hits an interface, it's 

reflected three times and refracted three times. For each of the three types of incident waves, the 

energy distribution within the reflected and refracted waves is analyzed. At the plane contact between 

kerosene-saturated sandstone and water-saturated lime-stone, a numerical example calculates the 

energy shares of reflected and refracted waves. Various boundary conditions are discussed, and their 

effects on these energy distributions are contrasted. 

M D Sharma [17] derived a mathematical model for the wave propagation in anisotropic generalized 

thermoelastic medium. To model the wave propagation phenomenon in anisotropic thermoelastic 

media, two systems of equations have been developed. The first one depicts the medium's modified 

Christoffel equations, while the second one relates the temperature of the medium to the motion of its 

particles. There are three thermal parameters that control the overall effect of thermodynamics on 

wave propagation, and they are defined by a combination of the frequency and thermal coefficients. A 

method is described for precisely determining the speeds and attenuations of four quasi-waves 

travelling in such a medium. Both isotropic thermoelastic propagation and anisotropic elastic 

propagation are reduced to special instances. In the case of general anisotropy, an analogy has been 

established between thermoelastic wave propagation and poroelastic wave propagation. For a realistic 

numerical model, the variations in phase velocities and attenuation factors with the direction of phase 

propagation are estimated. Through the three thermal parameters described in the study, the influence 

of frequency, thermal conductivity, relaxation time, specific heat, and anisotropic symmetries on the 

velocities and attenuations of quasi-waves is numerically demonstrated. 

M D Sharma [19] presented a model for studying surface waves in a general anisotropic poroelastic 

medium. This method is used for isotropic media; a complicated secular equation is derived to explain 
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the propagation of surface waves at the stress-free plane of a nondissipative porous medium. The most 

important aspect is that the resultant equation may be solved using iterative numerical methods since 

it can be analytically divided into real and imaginary parts. This secular equation's root determines the 

apparent phase velocity in a specified direction on the surface and denotes the existence of surface 

waves. The model of a crustal rock undergoes numerical work. For the top three anisotropies—

triclinic, monoclinic, and orthorhombic—the propagation of surface waves is investigated 

numerically. 
 

Conclusion 

After reviewing the literature on thermoelasticity and wave propagation, it is clear that these are 

highly multidisciplinary subjects with a wide range of scientific and engineering applications. 

A thorough understanding of how materials behave under mechanical and thermal stress is possible 

due to the combination of thermodynamic and elasticity concepts known as thermoelasticity. 

Engineering fields directly benefit from the understandings obtained from study on wave propagation 

and thermoelasticity. This covers, among other things, materials science, civil engineering, and 

aeronautical engineering. 
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