A STUDY ON STRENGTH OF CONCRETE USING MICROSILICA AND NANOSILICA AS A PARTIAL REPLACEMENT OF CEMENT

^{1st} D. Nithya, ^{2nd}A. Shanmugapriya, ^{3rd}GTS. Gunavarshali

^{1st} Assistant Professor, Department of Civil Engineering, Builders Engineering College, Kangayam, Tirupur-638108 dn.civil@builderscollege.edu.in

 ^{2nd} PG Student, Department of Civil Engineering, Builders Engineering College, Kangayam, Tirupur-638108 shanpriyacivil@gmail.com
^{3rd} UG Student, Department of Civil Engineering, Builders Engineering College, Kangayam, Tirupur-638108 gunavarshali2003gts@gmail.com

Abstract

Amorphous silica particles come in two different sizes, microsilica and nanosilica, each of which has distinct characteristics and finds use in a wide range of industries. Microsilica, also referred to as silica fume, is a byproduct of the manufacturing of ferrosilicon alloys and silicon metal. It is made up of extremely reactive, small particles that range in size from 0.1 to 0.3 micrometres on average. On the other hand, nanosilica refers to silica particles that are frequently produced utilising cutting-edge nanotechnology processes and have diameters that are typically less than 100 nanometers. Both microsilica and nanosilica have remarkable surface area-to-volume ratios, which improve mechanical characteristics and increase reactivity when added to various materials. These silica particles can operate as fillers, reinforcements, and modifiers, giving composites, coatings, adhesives, and cementitious materials desirable properties. Microsilica and nanosilica are significant additions for enhancing the strength, durability, and performance of construction materials due to their special characteristics, including their high surface area, low thermal conductivity, and strong pozzolanic reactivity. Additionally, due to the capacity to build thick and compact microstructures with small particle sizes, permeability is decreased and chemical resistance is increased. In this study, we examine the strengths of microsilica without nanosilica at 10% cement replacement with 1% nanosilica and compare with M40 conventional concrete.

Keywords: Microsilica, Nanosilica, Pozzolanic reactivity, Low thermal conductivity, Strength, Durability

I. INTRODUCTION

For the building industry to advance, concrete's performance as a construction material must be improved. Several improvements to the inert qualities of traditional concrete have been made during the past few decades. Nanoindentation results of cement paste samples with similar percentages of silica fume and nanosilica were compared. Samples with nanosilica had almost twice the amount of high-stiffness C-S-H as the samples with silica fumes [1]. The use of silica fume leads to reduction in cement quantity for construction purpose ad its uses should be promoted for better performance as well as for environmental sustainability [2]. The use of silica fume in concrete has improved the performance of concrete in strength as well as in durability aspect [3]. The excess addition of silica fume and nanosilica reduces workability. However, in some cases it improves the workability. Silica fume inclusion increases the compressive strength

of concrete significantly (6-57%). The increase depends upon the replacement level [4].

II. MATERIAL PROPERTIES

Cement

The Portland Pozzolana Cement of the Ultratech brand that complied with IS 1489 - 2015 (Part 1) was used. It contains 4% gypsum, 15–35% pozzolanic material, and the remaining clinker. According to the BIS code, PPC is comparable to grade 33. The PPC increases the concrete's density and impermeability by reacting with the calcium hydroxide that is released when Portland cement hydrates. However, these cements' actual strength at the production is substantially higher than the BIS specification. The primary ingredients used to make cement are lime, silica, alumina, silica and iron oxide. The various properties of Cement are shown in table below.

Parameters	Values
Specific Gravity	2.88
Standard consistency	32%
Initial Setting time	45 min
Final setting time	240 min

Table 1: Properties of Cement

Fine Aggregate:

Fine aggregates are defined as those that pass through an IS sieve with a mesh size of 4.75mm. Under grading zone II, M-Sand is utilized as a fine aggregate in accordance with IS 383 - 2016. The table below displays the test results for the fine aggregate qualities.

Parameters	Values
Specific Gravity	2.605
Sieve analysis	Zone II
Fineness modulus	2.937

Table 2: Properties of Fine Aggregate (M – Sand)

Water absorption	1%
------------------	----

Coarse Aggregate:

The majority of the aggregate that passes through a 4.75mm IS sieve is referred to be coarse aggregate. The strength of concrete is determined by the characteristics of coarse particles. Therefore, the aggregate should be devoid of contaminants such as minerals and chemicals. Crushed angular metal from a local source was used as coarse aggregate. The choice of coarse aggregate must take into account a number of factors. The characteristics are described below.

1	88 8
Parameters	Values
Specific Gravity	2.74
Size of aggregate	20mm & 10mm
Water absorption	0.45%

Table 3: Properties of Coarse Aggregate

Microsilica

Micro silica, commonly referred to as silica fume, is an amorphous polymorph of the mineral silica. It is made up of 150 nm-diameters, spherical particles on average.

The silica fume is "very fine non-crystalline silica produced in electric arc furnaces as a by-product of the production of elemental silicon or alloys containing silicon," according to the American Concrete Institute. Typically, the powder is grey in colour and somewhat resembles fly ashes or Portland cement.

Table 4: Properties of micro silica

Property	Percentage (%)
Particle size	Less than 1µm
Specific surface area	$15000 - 30000 \text{ m}^2/\text{kg}$
Bulk density	$130-430 \text{ kg/m}^3$
Specific gravity	2.2
Color	Grey
Shape	Spherical
SiO ₂	85-98%

Nanosilica

Like Silica Fume, nano silica is a substance that is distinguished by having a high SiO2 percentage of above 99%. It is also known as quartz dust or silica dust. By including Nano silica, the aggregate mix's grading curve is completed in the zone of smallest sizes, reducing the amount of cement required.

Property	Percentage (%)
Colour	White
Form	Amorphous
Apparent density	0.3696 g/cm ³
Particle size	10 – 20 nm
Silica content (Dry basis)	99.8%
Dispersity (ccl4)	98.6%
Free water content	≤3%
Specific surface area	100 m ² /g

Table 5: Properties of Nano silica

Superplasticizer

As a water-reducing agent, the Superplasticizer is utilised. Conplast SP430 is a superplasticizing admixture free of chloride that is based on certain sulphonated napthalene polymers. It is provided as a dark solution that dissolves quickly in water. Conplast sp430 complies with ASTM C 494 as Type A and Type F and BS 5075 part 3 as well. Research makes uses of type F. Below are listed the super plasticizer's qualities.

Table 6:	Properties	of Super	plasticizer
----------	------------	----------	-------------

Appearance	Brown liquid
Specific gravity	Typically 1.20 at 20°C
Chloride content	Nil to BS 5075
Air entrainment	less than 2% additional air is entrained at normal dosages
Alkali content	less than 72 g

III. Mix Design

Table 7: Mix proportions of Conventional concrete

Cement	Fine	Coarse	W/C	Superplasticizer
(Kg)	Aggregate	Aggregate	Ratio	(Conplast
	(Kg)	(Kg)	(Lit)	sp430) (ml)
440	623	1216	154	4400
1	1.42	2.76	0.35	10

Cem	Micr	Fine	Coarse	W/C	Superplasticiz
ent	0	Aggre	Aggreg	Rati	er (Conplast
(Kg)	silic	gate	ate (Kg)	0	sp430) (ml)
	a	(Kg)		(Lit)	
	(Kg)				
396	44	623	1216	154	4400
0.9	0.1	1.42	2.76	0.35	10

Table 8: Mix proportions of 10% Microsilica in concrete

Table 9: Mix proportions of 10% Microsilica with 1% Nanosilica in concrete

Ceme	Micr	Nan	F.A	C.A	W/C	Superplastici
nt	0	0			Rati	zer (Conplast
	silic	Silic			0	sp430) (ml)
	a	a				
391.6	44	4.4	623	1216	154	4400
0.89	0.1	0.01	1.42	2.76	0.35	10

IV. TESTS AND RESULTS

In this testing investigation, specimens are cast and tested to measure the compressive strength, split tensile strength, and flexural strength of conventional concrete, 10% Microsilica replacement in cement, and 10% Microsilica replacement in cement with 1% Nanosilica. For compressive strength, split tensile strength, and flexural strength, the specimen sizes are 150 mm x 150 mm x 150 mm, 150 mm x 300 mm, and 100 mm x 100 mm, 500 mm, respectively.

Table	10:	Mix	proportions
-------	-----	-----	-------------

Mi		Binder	Fine	Coarse	
x	Ceme nt (%)	Microsilc a (%)	Nanosili ca (%)	Aggrega te (%)	Aggregat e (%)
M1	100	0	0	100	100
M2	90	10	0	100	100
M3	89	10	1	100	100

Mix	Compressiv	e Strength	Split tensile strength		Flexural strength
	(N/mm^2)		(N/mm^2)		(N/mm^2)
	7 1	29 1	7 1	20 1	29 4
	/ days	28 days	/ days	28 days	28 days
M1	25.64	41.93	2.03	3.19	3.29
M1	27.63	/3/2	2.1	3.26	2.8
1011	27.05	73.72	2.1	5.20	2.0
M1	26.49	42.24	2.15	2.98	2.95
A	26.50	12 52	2.00	2.14	2.01
Average	20.59	42.55	2.09	5.14	5.01
M2	35.42	44.38	2.65	3.83	6.8
M2	36.00	16.18	28	4.15	5.2
1012	50.09	40.48	2.0	4.15	5.2
M2	33.22	44.12	2.22	3.9	5.6
Avonogo	24.01	44.00	2.56	2.06	5 97
Average	34.91	44.99	2.50	5.90	5.87
M3	23.42	34.33	1.56	2.49	3.5
M2	22.21	20.71	1.05	2.02	2 1
M3	22.21	30.71	1.95	2.85	3.1
M3	25.24	38	1.70	3.18	2.22
A	22 (2	24.25	1 74	2.02	2.04
Average	23.02	34.35	1./4	2.83	2.94

Table 11: Test Results

 $M1-Conventional\ concrete$

 $M2-10\%\ Microsilica\ replacement\ in\ cement$

M3-10% Microsilica replacement in cement with 1% nanosilica

FIG 1: COMPRESSIVE STRENGTH RESULT

V. CONCLUSIONS

In this testing investigation, compare the strength of compressive strength, split tensile strength, flexural strength to 10% replacement of microsilica in cement, and 10% replacement of microsilica in cement with 1% nanosilica, with conventional concrete. According to the test results, 10% microsilica substitution in cement produces superior results than two.

Reference

- ParamitaMondal, Surendra P. Shah, Laurence D.Marks, and Juan J.Gaitero(2010) Comparative study of the effects of Microsilica and Nanosilica in Concrete. Journal of the Transportation Research board, Volume 2141 Issue 1, January 2010.
- (2) Ramkumar, Er.Jitender Dhaka (2016) International journal for Technological Research in Engineering, Volume 4, Issue 1, September 2016.
- (3) **Rohit Sharma** (2018), Partial replacement of cement by silica fume, International journal of Engineering Development and Research, Volume 6, Issue 4, 2018.
- (4) BangaruSaiSrinivas, K.V.V. Rama Raju(2022), Strength Evaluation and Durability on addition of Nanosilica in M30 Grade concrete, International Journal for Research in Applied Science and Engineering Technology, Volume 10, Issue II, Febrauary 2022.
- (5) K.N.R.Thesarajan, L.Subbaraj, R.Priyavarshiny, N.Ajitha Parvathy (2020), Experimental investigation on Partial replacement of silica fume and copper slag in concrete, International Journal of Applied Engineering Research, Volume 15, ISSN 0973 –4562, 2020
- (6) **Rahul koul, Shubam Sharma and et.al,** (2018), Effect of silica fumes on the compressive strength of concrete, International Journal of Engineering Research and Management, Volume 5, Issue 3, March 2018.
- (7) Rohit Sharma (2018), Partial replacement of cement by Silica fume, IJEDR, Volume 6, Issue 4, ISSN: 2321-9939.
- (8) Shivam malviya, Arbaz baig, Yash Liladia (2020), Partial replacement of cement in concrete by using silica fume, International Research Journal of Engineering and Technology, Volume 7, Issue 2, February 2020.
- (9) Nanabala jyosthana, A Naveen, J Karimasil (2021), Partial replacement of cement by using silica fume in concrete, International Research Journal of Engineering and Technology, Volume 8, Issue 6, June 2021.
- (10) IS 10262:2019, for Mix Design Calculation
- (11) IS 383:2016, for Fine Aggregate and Coarse Aggregate Specifications
- (12) Abhinav Shyam, Abdul Anwar, Syed Aqeel Ahmad (2017), A literature review on study of silica fume as partial replacement of cement in concrete, International Journal of Advanced Engineering, Management and Science, Volume 3, Issue 3, March 2017.
- (13) Sabah M.Thahab Al-Abbodi, Eman Jabbar Abed Al-Shaibani (2020), Preparation and characterization of Nano silica prepared by different precipitation methods, 3rd International Conference on Recent Innovations in Engineering.

- (14) Lincy Varghese, VVL.Kanta Rao, Lakshmy parameswaran (2015), A review on effects of nanosillica and microsilica on microstructural and mechanical properties of concrete, Advancements in structural concrete, Page no: 356-362.
- (15) Paratibha Aggarwal, Rahul pratap singh and Yogesh Aggarwal (2015), Use of nanosilica in cement based materials – A review, Cogent engineering, ISSN 2331-1916.
- (16) M.A.Rahman, M.F.S.Zawad, S.N.Priyom (2020), Potential use of microsilica in concrete, A critical review, 5th International Conference on Advances in Civil Engineering, 4-6 March 2021.
- (17) Chippada Srinivas, T.Satyavathi, P.Gnana Prakash (2019), A study on Investigation of micro silica as partial replacement of cement in concrete, International Journal of Applied Engineering Research, ISSN 0973-4562, Volume 14, Number 9, 2019.
- (18) Yasir karim, Megha cheema, Neha Agarwal, Pooja Gothwal, Nirjhar Joshi (2019), Journal of Emerging Technologies and Innovative Recharge, Volume 6, Issue 6, June 2019.
- (19) V B Balabanov, K N Putsenko (2017), Comparative analysis of the principal characteristics of microsilica obtained from silicon manufacture wastes and used in concrete production technologies, IOP Conference series: Materials Science and Engineering.
- (20) T.Shanmugapriya, Dr.R.N.Uma (2013), Experimental investigation on silica fume as partial replacement of cement in High Performance Concrete, The International Journal of Engineering and Science, Volume 2, Issue 5, Pages 40-45.