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ABSTRACT 

Prompt tokenization is a crucial step in natural language generation models such as Chat GPT, and its 

performance can vary significantly across different languages. In this paper, we investigate the impact of input 

language on prompt tokenization in Chat GPT by analyzing the performance of the tokenization technique 

across the Telugu language. Our experiments reveal that the tokenization technique can have a significant 

impact on the model's performance and that prompt tokenization performance varies significantly across 

different languages. Our findings have substantial implications for the development of multilingual natural 

language generation models. They provide insights into the challenges and opportunities associated with 

generating high-quality text across diverse languages. Our results suggest that subword tokenization methods 

such as Language specific preprocessing techniques promise alternatives for improving prompt tokenization 

performance in non-English languages. Furthermore, we provide language-specific preprocessing methods to 

reduce the tokens needed in languages like Telugu. 
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INTRODUCTION  

ChatGPT is an artificial intelligence program that can understand language and chat with people to answer their 

questions or respond to their statements. It uses advanced machine learning algorithms to continually improve 

its understanding of language and ability to answer questions. It has access to a vast database of knowledge, 

which it can draw from to provide accurate answers. 

ChatGPT can be personalized to fit the needs of different users or industries. For example, a customer service 

chatbot might be programmed to use a friendly and helpful tone, while a news chatbot might be programmed to 

provide information in a concise and objective manner.  

This paper investigates the impact of input language on prompt tokenization in ChatGPT, one of the most 

widely used natural language processing models. It reveals that prompt tokenization performance varies 
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significantly across different languages and that the tokenization technique can have a significant impact on the 

model's overall performance. 

The findings have important implications for the development of multilingual natural language generation 

models and provide insights into the challenges and opportunities associated with generating high-quality text 

across diverse languages. We recommend language-specific preparation methods like transliteration to lessen 

the number of tokens needed in languages like Telugu. 

 

LITERATURE REVIEW 

Tokenization is a crucial step in natural language processing (NLP). It involves breaking up a piece of text into 

smaller units called tokens, which can then be used to train machine learning models or perform other NLP 

tasks. In English, tokenization is relatively straightforward, but many languages such as Chinese, Japanese, and 

Thai do not use spaces between words. To address this challenge, researchers have developed various 

approaches to tokenization for non-English languages, such as heuristics or rules-based systems, and machine 

learning models such as neural networks. GPT-2 and GPT-3 models can be fine-tuned on specific languages or 

tasks, allowing them to learn how to tokenize text in a more accurate and efficient way. However, using GPT 

models for non-English languages presents its own set of challenges. One major challenge is the lack of large-

scale training data for some languages. This can make it difficult to fine-tune GPT models effectively or to 

evaluate their performance accurately. 

In addition, GPT models are typically trained on left-to-right language models, which can make them less 

effective for languages that are written right-to-left, such as Arabic and Hebrew. Researchers have developed 

various techniques to overcome this challenge, such as reversing the order of text input or using bidirectional 

models. Despite these challenges, there has been significant progress in developing effective tokenization 

approaches for non-English languages using GPT models. Researchers continue to explore new techniques and 

approaches to improve the accuracy and efficiency of tokenization in these languages, which will be crucial for 

advancing NLP research and applications in a global context. [5] Proposed a novel Chinese word segmentation 

method based on dynamic programming and applied it to GPT models. Their method achieved higher 

tokenization accuracy than existing Chinese tokenization tools, which led to improved performance on Chinese 

NLP tasks.  

[3] Evaluated the performance of multilingual BERT and RoBERTa models on Greek texts and developed a 

specialized tokenizer for Greek language data. They found that using a specialized tokenizer improved the 

performance of the language models on Greek language tasks. [2] Developed BengaliBERT, a pre-trained 

language model for the Bengali language that used a custom tokenizer to handle the complex morphology of 

Bengali. Their tokenizer outperformed existing Bengali tokenizers and led to improved performance on Bengali 

NLP tasks. [4] Conducted a comparative study of different tokenization methods for Hindi text and evaluated 

their effectiveness in training a GPT-2 language model. They found that a custom tokenizer that used a 

combination of morphological and linguistic features outperformed other tokenization methods and improved 

the performance of the Hindi GPT-2 model on various NLP tasks. [1] Also compared different tokenization 

methods for Indian languages and found that a rule-based tokenizer that used a combination of morphological 
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and linguistic features outperformed other tokenization methods for training a GPT-2 model. Overall, recent 

research has demonstrated the importance of developing specialized tokenization methods for non-English 

languages in GPT models to improve their performance on NLP tasks. Future research can focus on developing 

more efficient and accurate tokenization methods for a wider range of non-English languages. 

 

PROPOSED WORK 

There are several alternatives to overcome the limitation of requiring more tokens in non-English languages 

when using GPT models. Some of these alternatives are: 

1. Subword Tokenization: It is a method of breaking words down into smaller units called subwords, which is 

different from traditional tokenization. It can handle rare or out-of-vocabulary words more effectively than 

other methods, as the vocabulary of subwords can be larger than the vocabulary of words. However, it can 

produce more tokens than word-based tokenization, as each word is broken down into multiple subwords, 

increasing the overall number of tokens in a text. 

2.  Byte Pair Encoding (BPE): Byte Pair Encoding (BPE) is a type of subword tokenization that works by 

iteratively merging the most frequent pairs of character sequences in a corpus until a specified vocabulary 

size is reached. It can handle rare or unseen words more effectively than other methods, but it can be 

computationally expensive and time-consuming. BPE requires iterating over the entire corpus multiple times, 

which can be time-consuming and resource-intensive. 

3. SentencePiece: Sentence Piece is an unsupervised machine-learning algorithm for subword tokenization that 

can handle languages with complex morphology. It is based on the expectation-maximization (EM) 

algorithm, which iteratively estimates the parameters of a statistical model given a corpus of text. 

SentencePiece uses the unigram language model to assign probabilities to different subwords and the Viterbi 

algorithm to find the most likely segmentation of a given word into subwords. It has an advantage over other 

methods, as it can adapt to the specific features of a given language. However, it can be computationally 

expensive, particularly for large corpora. 

4. Language-specific preprocessing: Language-specific preprocessing techniques can also be used to reduce 

the number of tokens required in languages like Telugu. One such technique is ‘transliteration’, which 

involves representing a word in a different script. This can be particularly useful for languages like Telugu, 

which have a complex script that requires a large number of tokens. Transliteration can reduce the number of 

tokens required by representing words in a simpler script, such as Roman script. For example, the Telugu 

word "పడిపోయినాను" (padipoyinaanu) can be transliterated as "padipoyinaanu", which requires fewer 

tokens han the original Telugu script. 

5. However, it is important to note that language-specific preprocessing techniques may not always be effective 

or appropriate for all languages or use cases. For example, some languages may not have a well-defined 

morphological structure or may not be easily transliterated into a simpler script. In addition, language-

specific preprocessing techniques may introduce errors or loss of information, particularly in cases where the 

original script or morphology is important for the meaning of the text. Therefore, it is important to carefully 

evaluate the effectiveness and impact of these techniques for each specific language and use case. 
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These alternatives can improve the performance of GPT models for non-English languages like Telugu by 

reducing the number of tokens required and handling complex linguistic features effectively. 

 

METHODOLOGY 

In this paper, we chose a language-specific preprocessing technique called ‘transliteration’. Transliteration is 

the process of converting text from one writing system to another while maintaining the phonetic and spelling 

accuracy of the original language. Here is the procedure of the proposed work: 

First, we input text in any non-English language. We considered the Telugu language in this case. Then, the 

input is transliterated. This process involves mapping the sounds of one language to the closest possible sounds 

in another language's writing system. The goal of transliteration is to help people read and pronounce words in a 

language they are not familiar with or to create a standard for writing words from one language in another 

language's writing system.  

The module, indic_transliteration is used for transliteration: It is a Python module that provides functions for 

transliterating text between various Indian scripts. It supports transliteration between a wide range of Indian 

scripts such as Devanagari, Tamil, Telugu, Kannada, Bengali, Gujarati, etc. The indic_transliteration module is 

particularly useful for applications that need to process text in multiple Indian scripts, such as language 

translation or natural language processing. 

Next up, the transliterated text is sent as a prompt to ChatGpt. The Openai module is used to perform this step 

and get a response to ChatGPT. The openai module is a Python interface to the OpenAI API. It provides access 

to several language models such as GPT-3, which can be used for a variety of natural language processing tasks 

such as language translation, text summarization, and language generation. 

 

Fig 1. Flow of Implementation. 

Later, langdetect module checks whether the given text is in Telugu or not. It uses statistical analysis of text to 

identify the language of a given text. The module supports over 55 languages and can be used to automatically 

detect the language of a large corpus of text, which is particularly useful in applications that need to process text 

in multiple languages. 

As a final step, the googletrans module is a Python Library that provides an interface to the Google Translate 

API. It allows users to translate text from one language to another using Google's machine translation 
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technology. The module supports over 100 languages and provides an easy-to-use interface for translating large 

amounts of text.  

That means, If the output is in Telugu, we prints the output as it is. But, if the output is in English, the 

googletrans module translates it to the Telugu language (our desired non-English language). 

 

Experimentation and Results: 

 

Fig 2. Execution Output. 

 

  

Fig 3. Tokens comparison Trasliterated vs Telugu script. 

We conducted an experiment to compare the performance of a Telugu language model when using input 

prompts in a Telugu script versus a transliterated script. We generated 10 Telugu prompts, each with an average 

length of 70 to 100 tokens, and transliterated them into a transliterated script using the indic_transliteration 

module. We then generated responses to each prompt using the same model and measured the average number 

of tokens required for each response. 
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Fig 4. OpenAi API usage to analyze Tokens used by the prompt. 

 

We found that when using Telugu prompts, on average 70 to 100 tokens per prompt generate a response. 

However, when using transliterated prompts, the model required only 18 to 25 tokens per prompt on average. 

This represents a reduction of approximately 70% in the number of tokens required per prompt. We also found 

that the processing time for the transliterated prompts was faster than for the Telugu prompts. 

Our experiment suggests that using transliterated prompts can significantly reduce the number of tokens 

required for a prompt in Telugu and other Non-English Languages, leading to faster processing times and 

potentially more efficient use of computational resources. 

 

CONCLUSION 

In conclusion, tokenization is a crucial aspect of natural language processing and plays a significant role in the 

effectiveness of language models, such as the GPT models. While tokenization has been successful for English 

language processing, it poses significant challenges for non-English languages due to the complexity and 

variability of their syntax and orthography. In this research paper, we have identified and discussed these 

challenges, including the lack of standardized tokenization methods and the need for language-specific 

tokenization techniques. We have also proposed potential solutions to overcome these challenges, such as the 

use of morphological analysis and language-specific pre-processing techniques.  

Overall, our research shows that addressing these challenges can significantly improve the accuracy and 

effectiveness of GPT models for non-English languages, opening up new possibilities for natural language 

processing in diverse linguistic contexts. 

FUTURE SCOPE 

One area that requires improvement is the development of advanced transliteration algorithms that can handle 

complex linguistic features such as tone, intonation, and emphasis. These features are crucial in many non-

English languages and significantly affect the pronunciation and meaning of words. Enhancing the accuracy of 

transliteration in these areas can create more effective models for non-English language processing and machine 

learning. 
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Another potential area of development involves integrating transliteration with other natural language 

processing techniques such as sentiment analysis and machine translation. This integration can lead to more 

comprehensive models for analyzing and understanding non-English language text. 

The future of transliteration involves continued development and refinement of the technique to improve its 

accuracy, efficiency, and effectiveness in the context of non-English language processing and machine learning. 
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