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Abstract: 

The number of people suffering from liver illness has been rapidly increasing in recent years. This is due to an unhealthy 

lifestyle and excessive alcohol consumption. The patients suffering from Liver disease has grown rapidly in the recent 

times, so in order to be cautions, we have to come up with a prediction model for predicting whether a patient is suffering 

from Liver related diseases or not. As a result, early detection of liver illness can save a person's life. The dataset used in 

this paper consists of 10predictive attributes and 1 class. The main aim of this paper is to predict the liver disease using 

various classification algorithms with and without feature reduction and without feature reduction datasets. The 

performance measures such as precision, recall, f-measure, ROC area, MAE, RMSE, accuracy are considered and 

compared with and without feature selection.  
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1. Introduction: 

 The largest solid organ in the human body is the liver. It removes impurities from the body's blood supply, 

controls blood coagulation, and performs hundreds of additional tasks. It is located beneath the rib cage in the right upper 

abdomen. The liver filters all of the blood in the body and breaks down harmful substances such as alcohol and drugs. Bile 

is a bile-like fluid produced by the liver that aids in fat breakdown and waste disposal. Each lobe of the liver has eight 

sections and thousands of lobules (or small lobes). It is possible to pass on liver disease from one generation to the next 

(genetic). Viruses, alcohol consumption, and obesity are just a few factors that can affect the liver.The Human Liver is 

pictorially shown below: 
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Fig :1 Liver with Right Lobe & Left Lobe. 

The liver is divided into four lobes: the right and left lobes, as well as the caudate and quadrate lobes, which are smaller. The 

left and right lobes are separated by the falciform (Latin for "sickle-shaped") ligament, which connects the liver to the 

abdominal wall. The liver lobes are further subdivided into eight segments, each with thousands of lobules (small lobes). 

Each of these lobules has a duct that connects to the common hepatic duct, which drains bile from the liver. 

Damage to the liver over time can result in scarring (cirrhosis), which can progress to liver failure, which can be fatal. Early 

therapy, on the other hand, may allow the liver to heal. 

The Following are some of the symptoms that cause due to Liver disease. They are: 

 jaundice, 

 abdominal pain and swelling, 

 confusion, 

 bleeding, 

 fatigue, and 

 weight loss. 

2. Related Study: 

Research on machine learning has been extensive, and it has been used in a wide variety of fields around the world. 

Machine learning has proven its worth in medicine, where it has been used to handle a variety of urgent issues such 

as cancer therapy, heart disease diagnostics, and dengue fever diagnosis, among others. Many studies have used 

Decision Tree algorithms, which are one of numerous exceptional methodologies. 
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3. Implementation 

3.1. Dataset Description: 

The Sample dataset used in this paper is shown below: 

Figure:1 Snapshot of Sample dataset 

The dataset used in this paper consists of 10 attributes and 1 outcome. The number of instances taken are around 600 

samples. The attributes considered are: Age, Gender, Total Bilirubin, Direct Bilirubin, Alkaline Phosphotase, 

Alamine Aminotransferase, Total Protiens, Albumin, Aspartate_Aminotransferase, Albumin and Globulin Ratio and 

1 outcome. Here we are taking 80% of the samples as training data and 20% of the samples as testing data. 

3.2 Logistic Regression:  

Logistic regression is a Machine learning technique which is very simple and yet very effective classification 

algorithm. It is commonly used for many binary classification tasks.When the value of the target variable 

is categorical in nature, then we go for logistic regression. When the outcome is either 1 or 0 then we prefer this 

classification technique.   

3.3 J48 Algorithm: 

For data classification, we've been using the most common method J48. In order to identify distinct applications, the 

J48 algorithm is utilized. In terms of categorical and continuous data analysis, the J48 algorithm is one of the most 

effective machine learning algorithms. However, when it is used to identify medical data, it consumes more memory 

and reduces efficiency. 

 

3.4 Random Forest Algorithm: 

Random Forest comes under the category of supervised learning algorithms. And this method can be used to tackle 

classification and regression issues, however it is most commonly used to address classification problems. There are 

numerous classifiers that work together to tackle a complex problem and improve the model's accuracy. With a 

number of decision-making trees on distinct subsets of the given dataset, Random Forest chooses the mean to 

enhance the prediction accuracy, as its name implies. 
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3.5 K-Nearest Neighbor (KNN) Algorithm: 

KNN algorithm is one of the most basic machine-learning approaches under supervised learning algorithms. In 

KNN Algorithm, all training data is stored and a new data point is designated on the same basis. This suggests that 

the KNN Algorithm may be quickly grouped into a well-suited group when fresh data is introduced. If you want to 

do regression or classification, the KNN algorithm can be employed. 

 

3.6 Rep Tree Algorithm: 

The full form of REP is "Reduced Error Pruning" tree.Rep Tree algorithm is a fast decision tree learner it is also 

based on C4. 5 algorithm and can produce classification (discrete outcome) or regression trees (continuous 

outcome). It builds a regression/decision tree using information gain/variance and prunes it using reduced-error 

pruning (with back-fitting). 

 

4. Results Comparison 

In this work, liver disease data set taken form UCI machine learning repository having 10 predictive attribute and 

1class. Data set subjected to various machine learning algorithms such as logistic regression, J48,Random forest, K 

nearest neighbor(K=7) and REP Tree with 80 percent of training data. Some attributes which are showing less 

impact on prediction accuracy were identified and required features were selected using Info gain and classical 

attribute evaluation methods both are giving the same and better features in view of prediction accuracy. This work 

depicted in two cases showing performance of algorithms without and with feature selection. 

 

Case 1:  prediction of liver disease without feature selection  

In this case various machine learning classification algorithms were applied on original data set and performance 

evaluation parameters are compared. Table.1 shows numerical results of performance measures with all features 

both logistic regression and REP tree are showing best prediction accuracy when compared to other methods. Figure 

3 and 4 depicts graphical analysis of prediction accuracy with various algorithms. Figure 5 gives graphical variation 

of precision, recall and f-measure for different machine learning algorithms. Figure 9 shows graphical variation of 

prediction accuracy of liver disease data set and linear regression gives the better prediction accuracy with feature 

selection rather than without reducing the feature.  
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Table.1 performance measures for liver data set with different classification algorithms 

 

 

Fig.3. prediction analysis of liver disease 
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Fig.4 Liver disease Prediction accuracy without feature selection with different algorithms 

Algorithm Precision  Recall f-measure ROC Area MAE RMSE Accuracy (%) 

Logistic 

Regression 

0.678       0.724     0.681 0.766 0.3413 0.4061 72.4138 

J48 0.718       0.716     0.717 0.655 0.3335 0.4508 71.5517 

 

Random 

Forest 

0.672       0.707     0.681 0.724 0.3442 0.4232 70.6897 

KNN 0.614       0.638     0.625 0.636 0.3782 0.4554 63.7931 

 

REP Tree 0.659       0.724     0.654 0.654 0.3275 0.4077 72.4138 
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Fig.5 Comparison of performance evaluation parameters without feature selection 

Case 2:  prediction of liver disease with Info gain and Classical attribute evaluation 

In this case various machine learning classification algorithms were applied on data set with reduced features and 

performance evaluation parameters are compared.  Info gain and classical attribute evaluation methods are showing 

similar attributes to consider (1 to 7 out of 10). Table.2 shows numerical results of performance measures with 

reduced features logistic regression is showing best prediction accuracy when compared to other methods. Figure 6 

and 7 depicts graphical analysis of prediction accuracy with various algorithms. Figure 8 gives graphical variation of 

precision, recall and f-measure for different machine learning algorithms. 

 

Table.2 performance measures for liver data set with different classification algorithms 

Algorithm Precision  Recall f-measure ROC 

Area 

MAE RMSE Accuracy (%) 

Logistic 

Regression 

0.723       0.750     0.691 0.760 0.3507 0.407 75 

J48 0.733 0.724     0.733 0.500 0.3502 0.4431 73.2759 

Random 

Forest 

0.672       0.707     0.681 0.714 0.34 0.4224 70.6897 

KNN 0.644       0.672     0.656 0.635 0.3703 0.4615 67.2414 

REP Tree 0.684 0.733 0.711 0.500    0.402 0.4431 73.2759 
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Fig.6. prediction analysis of liver disease with info gain and Classical attribute evaluation 

 

Fig.7 Liver disease Prediction accuracy with feature selection and different algorithms 

 

Fig.8 Comparison of performance evaluation parameters with feature selection 
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Fig.9 Comparison of prediction accuracy with and without feature selection 

5. Conclusion 

Many researchers are yet trying to apply machine learning techniques for various data analysis and prediction issues 

related to may engineering applications. This work aims to predict the liver disease prior to avoid death cases. 

Prediction analysis carried out without and with seven essential attributes in two different cases with five different 

classification algorithms such as linear regression, J48, Random forest, K-nearest neighbor and REP tree. After the 

implementation of various algorithms Linear regression showing good results for prediction of liver disease by 

considering essential features with infogain and classical attribute evaluation methods. The study can also be 

expanded to include other data mining methods, such as time series, clustering and association rules, vector support 

systems and genetic algorithms. 
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