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ABSTRACT 

The purpose of this article is to obtain a mathematical model for a single-joint system to improve thestep 

response of a prosthetic arm using a Proportional Integral Derivative control system in order to address past, 

present, and future error. A controller is tweaked by placingpoles to get better performance and optimizer the 

following parameters for best outcome: response time, steady state error and overshoot. A 2 degree of freedom 

robotic arm is implemented using hardware components to mimic the armmovement and analyzing it. 

The action of the PID is simulated with the open loopunstable system which ensured the set-point tracking of 

the closed loop system and maintained the stability of the closedloop system as both the transient and the steady 

state of the system is greatly improved. The results gotten are analysed both in the time and frequency domain 

which showed that the controller discarded steady state offset, damped oscillations and reduced overshoot 

while system stability was guaranteed. 

Keywords— PID controller, Prosthetic arm, single-jointsystem 

 

I. INTRODUCTION 

PID controllers are the most common and widely usedcontrollers for industrial automation although modern 

control method is desired like backstepping method for nonlinear systems. The reason for their wide usage is as a 

result of their simplicity which is not often rigorous but require just a few tasks of tuning the parameters of 

thecontroller. In this work we try to apply a PID controller because it has proven to have consistent performance 

where the Proportional part functions to ensure set-point tracking, the Integral part takes away steady state error 

and then the derivative action will damp most oscillations that occur at steady state. We introduce a unique 

method of determining the Proportional, Integral and Derivative gains by placing the poles of the closed-loop 

system and then used it to obtained closed loop gains for the system control. Thismethod has proven to be 

consistent as tuning is not requiredbut just predetermined values of gains are derived. Simulink is used to tune 

the PID controller according to thetransfer function derived and hence it can be used to optimize the movement. 

The hardware of robotic arm with 1 dimension of motion is given in fig-1.  

Figure-1 
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III. INDENTATIONS AND EQUATIONS 

1. Methodology 

In order to provide information to the controller aboutwhether the plant has performed its task or not, a 

closed loop system is used so the controller knows what the plantis actually doing. The output from the 

plant is monitoredand feedback is provided to the controller, which is thencompared with the system 

input to determine deviations from the expected output, allowing the controller to makeany necessary 

adjustments. This allows the system to counteract errors and decrease response time given below in 

fig.2. 

 

 

Figure-2 

2. Response parameters 

The main reason behind using a feedback loop is tominimize the errors. A few basic parameters defined 

below are focused on to improve the output response ofthe feedback loop. Each parameter represents the 
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behavior of a particular movement of the prosthetic arm controlled by an input voltage 

 Rise time: The duration for which majority of themovement of arm is noticed. 

 Overshoot: The displacement of arm past thedesired output. 

 Settling time: Time taken by arm to reach its finalposition. 

 Steady-state error: The difference between theactual position of the arm and the desired 

position of the arm. 

 Oscillation: The arm cycles back and forth between the desired location until it settles to its final 

position. 

The optimal system would have the shortest possible rise time and settling time; as well as the 

smallest steady-state error and overshoot. The response parameters are explained in the fig. 3 given 

below. 

 

Figure-3 

3. PID controller 

The combination of proportional control action, integralcontrol action and the derivative control action is 

called thePID-control action. The proportional controller stabilizes the gain but produces a steady state error. 

The integral controllerreduces the steady state error. The derivative controller reduces the rate of change of 

error. The controller is manipulated with the help of constants Kp, Ki and Kd explained in the figure below. 

Figure-4 

 

Proportional Control: (Kp) 

The proportional controller improves the steady-statetracking accuracy, disturbance signal rejection and relative 

stability of the system. It also increases the loopgain of the system which results in reducing the sensitivity of 

the system to parameter variations. The drawback in P-controller is that it develops aconstant steady-state error. 

Integral Control: (Ki) 

The integral controller removes or reduces the steady error without the need for manual reset. Hence 
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the I- controller is sometimes called automatic reset. The drawback in integral controller is that it may 

lead to oscillatory response of increasing or decreasing amplitude which is undesirable, and the system 

may become unstable. 

Derivative Control: (Kd) 

The derivative controller focuses on the “future” error,which is done by taking the derivative of the 

error signal andmultiplying by the KD constant. The derivative portion helps to improve overshoot, 

rise time, and settling time. 

4. Arm Model 

After considering the torque balance between inertia andfriction, the torque for the elbow joint can be 

modelled by Ordinary Differential Equation (ODE): 

𝐽∗𝜃′′+ 𝑓∗𝜃′=𝑟+𝑀𝑔𝑙∗cos(𝜃) --(1) 

The equation is non-linear and hence we assume that gravity will not affect the movement of the am in 

horizontalmotion. Now since the range of motion and gravitational field are perpendicular therefore 

the cos(𝜃) component tbecomes zero: 

𝐽∗𝜃′′+ 𝑓∗𝜃′=𝑟 --(2) 

𝐽=𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑎𝑟𝑚. 

𝜃=𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝑓=𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡 

𝑟=𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢e 

 

The ordinary differential equation considers the torques, friction and inertia resisting an applied torque from 

the actuator. Since, we are modelling the output position to a step input, the system without control will never 

stop at a particular position. After adding a feedback loop, the actual and final position can be compared, and 

voltage can be increased or reduced to get to target position. 

 

4.1 Arm model with resistance band 

We need an extra torque dependent on the position itself, so a “spring” term was added to get a 

stable open loop response: 

 

𝐽∗𝜃′′+ 𝑓∗𝜃′+𝑅𝑏∗𝜃=𝑟 ---(3) 

𝑅𝑏=𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑎𝑛𝑑 (Spring Constant) 

To linearize the “spring” term, we assumed a straight trajectory for the resistive band instead of 

the actual circular path. All assumptions remain the same as the original arm model. 

5. Derivation of transfer functions 

 Transfer function of arm 

Start with the Arm Model. Take the Laplace and assume initial conditions are 0, as the arm is 

not moving initially: 

𝜃(𝑠)∗(𝐽𝑠2+𝑓𝑠) = 𝑇(𝑠) ---(4) Solve for the 
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Transfer Function and multiply by (1/𝑓)/(1/𝑓). 
 

 ---(5) 

Assume Input Voltage and Torque are linearly proportional: 

𝑟=Y∗𝐸A ---(6) 

 

--(7) 

 Transfer function of arm with resistance band 

Start with the Arm Model with Resistance Band Equation. Take the Laplace and assume 

initial conditions are 0, as the arm is not moving initially. 

𝜃(𝑠)(𝐽𝑠2+𝑓𝑠+𝑅𝑏) = 𝑇(𝑠) --(8) 

Solve in a similar manner as the above Transfer function of the arm. 

 

 

---(9) 

 

 

 

 

 

 

 

 

---(10) 

 

 

6. Optimization methods 

A method is chosen based on the response specific to the system its constraints. 

 Manual 

The simplest optimization method is manual tweaking of PID parameters. A simulation can be set up in 
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MATLAB to evaluate the numeric value of the response for a certain time range. Using what is known about 

each of the different control terms in PID, parameters are changed and the updated response is evaluated for 

quality. This method is essentially guess-and-check. 

 Cohen-Coon 

The Cohen-Coon optimization method is done by analysing the open-loop response of a system and getting 

time values for when the response is 50% of the steady state value and 63.2% of the steady state value. These 

time values are used with a predetermined table specific to this method to compute the values of the control 

constants. This method is most appropriate for systems that have a relatively long rise time. 

 

 Simulink 

The Simulink module in MATLAB is a very user-friendly method, provided that the system model can be 

created. To start optimization, simply “tune” the PID controller block in the model. The program will show 

you the current and “tuned” response, the latter of which will change as the properties sliders are adjusted. 

Simply raising the sliders to max will usually not yield a perfect result, as there are tradeoffs between desirable 

system properties. 

 

7. Result 

Arm without resistive band 

The uncontrolled system with no resistive band forms an infinite ramp. This corresponds to the arm spinning 

at a constant angular velocity. This is because a step torque is being input into the system, which eventually 

forms an equilibrium with the friction and inertia forces, and maintains a constant angular velocity. The arm is 

not actually going to an infinite position value, rather the arm keeps rotating, and the output can be rewritten 

as an angular position, along with a certain number of complete rotations. 

 

 

 

 

 

 

 

Figure-5 Steady state error of model with resistive 

band:0.7691 

Rise time of model with resistive band:0.35463 

Control constants 

Kp is:19.1485 

Ki is:9.077 

Kd is:57.5846 
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Cohen-coon optimization method 

  

Figure-6                                                  

Overshoot in Cohen-coon optimized control: 0.015883 

Steady state error in Cohen-coon optimized control: 0.0010668 

Rise time in Cohen-coon optimized control: 0.00136 

 

Simulink 

Arm without resistive band 

The tuning settings for an arm with no resistance are simple. Both sliders are just put to the maximum 

value and the cleanestand fastest response is achieved. The physical behavior of this system is like the 

manually tuned system, with a rapid convergence on the target position, and no overshoot. There is a key 

difference in the controller itself, in that the derivative gain is much lower than that of the manually tuned 

system, which makes the system more resistant to noisy signals. 

 

 

Figure-7 

Arm with resistive band  

The tuning settings for an arm with a resistance illustrate someof the tradeoffs involved in control system 

optimization. A faster response time can be specified, though this will come at the expense of either a 

significant steady state error (approximately 10%), or some overshoot in the response. Sincethis response is still 

very fast given the physical requirements, with a rise time of only 40 ms, stability of the response has been 

prioritized over response speed.  
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Figure-8 

8. Model limitations 

There are several limitations in our mathematical model. The main limitation in our model is our inability to 

include gravitational force, and thus an inability to model movement in the vertical plane. Another limitation 

in our model is the lack of multiple degrees of freedom. Theoretically, each joint would be independent of the 

surrounding joints when considering its own angular displacement, but the presence of inertia and momentum 

from other members would make each joint dependent on the other joints. This is made even more significant 

if we decide to model a multi-joint arm that is moving in the vertical plane with the influence of gravity. 

 

9. Conclusion 

We attempted to model a single joint arm that has a range of motion perpendicular to gravity, and with no 

external load. A torque was applied to the arm, and the forces that resist this torque are the inertia of the arm and 

the friction of the joint. It was found that this system alone would not produce a stable step response without a 

feedback loop, so a resistive band was added to stabilize the position in an open loop system. Different 

optimization methods were applied for the PID controllers of each of these systems. The methods utilized were 

manual tuning, Cohen-Coon optimization, and tuning in the Simulink module in MATLAB. It was determined 

that tuning with Simulink would give the best overall PID solution in both scenarios. The Simulink UI was very 

useful in quickly observing a range of solutions, as opposed to using the guess and check method of manual 

tuning. To improve this model, we can attempt to introduce gravity into this mode and add multiple joints. 

Introduction of multiple joints would create dependencies on the momentums of other joints. This effect would 

be magnified if gravity was also introduced into the model. An issue with the introduction of gravity in the 

model is the nonlinear equation that results from an accurate representation. 
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