

"Straightening machine: A Review"

Sharma Tanmaymani K¹, Maheshwari Anil S²

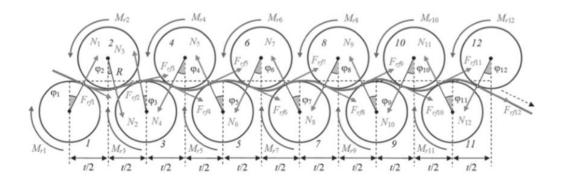
¹M-Tech Student, Department of Mechanical Engineering, School Of Engineering & Technology, Sandip University, Nashik, Maharashtra, India ² Professor, Department of Mechanical Engineering, School Of Engineering & Technology, Sandip University, Nashik, Maharashtra, India

ABSTRACT

In the Era of industries flatness in required component increases.to achieve flatness industries are mostly used hammer method but this method is time consuming, less accuracy as well as produce unwanted noise to meet this requirement and also to overcome from the problem and to increase production rate straightening machines are available in market, but in this machine many factors plays an important role just like working roller diameter, thickness of component, material of component, pressure acting on roller etc. This paper discuss about important parameter of straightening machine like roller diameter, pitch, forces and moment acting on sheet. These paper helps to saving time for developing such type of machine.

KEYWORD straightening machine, flatness, strip straightening machine, rollers, and sheet defects, strip.

I. INTRODUCTION


Flatness required in product is increases day by day to fulfill this requirement straightening machine is used. Straightening machine uses to removed curl, gutter, and unwanted bend in product. Straightening machine has been built with number of roller. Some machine having individual drive motor to each roller but important point is velocity of roller required same. Few important factor which is really affect flatness are roller size, pitch of the roller, residual stresses, speed, feed of the material, proper alignment of roller etc. To achieve flatness in the product we have to consider all the factor and work accordingly.

II.LITERATURE REVIEW

V.N.Shinkin [1] in this paper present that reduction of curvature and bend is also depend on working roller diameter, distance between two roller named as pitch of roller as well as number of roller. This paper consider detail methodology about determining forces shaft support reaction, bending moment as well residual stresses acting on steel sheet. Arithmetical method for calculating bending moment, curvature as well as reaction of

working roller of straightening machine is proposed and it shown that arithmetical method is better than korolev method. Below figure 3.1 shows forces as well a moment acting on sheet in 12 roller straightening system.

Fig.3.1 shows forces and moment acting on steel sheet

[Fig.3.1 reference- "arithmetical method of calculation of power parameters of twelve roller straightening machine" CIS Iron and Steel Review — Vol. 12 (2016), pp. 40–44]

Krishna jadhav et.al [2] in this paper presented methodology for calculation of roller as well as gear. This calculation help to determine roller diameter. In this calculating forces from area and tensile strength as shown below:

 $\sigma_t = F/A$

Where,

 σ_t = Tensile strength of component

F = force

A= (l×b), Area of component to be straighten and then used calculated force to determine roller diameter $\sigma_t = F/A$

Where,

 σ_t = Tensile strength of roller material

F= Force applied on roller

A= Area of roller

Markus gruber et.al [3] in this paper relation between working roller intermesh and residual stresses is evaluated to achieve constant flatness. The study are attention on seven roller machine with three load triangle named as plastification, residual stresses and flatness with feed forward system as shown in below figure. This figure shows a roller 2 is applying forces on strip till reach in plastification region, a middle triangle at roller 4 affect to residual stress distribution and at roller 6 ensure flatness of strip at outlet. The numerical study conducted and validate with experimental data and Concluded using different intermesh achieve different residual stresses for sheet flattening and achieve stress distribution by increasing number of bending operation.

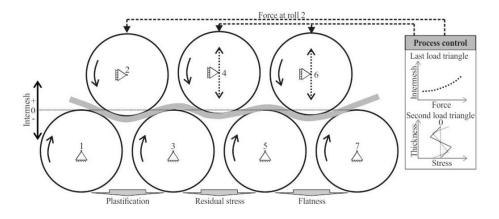


Fig.3.2 shows seven roller leveler with feed forward system

[Fig.3.2 reference- A strategy for controlled setting of flatness and residual stress distribution in sheet metal via roller levelling", ICTP 2017, procedia Engineering 207]

WANG Yongqin et.al [4] model was evaluated by comparative study presented that capacity of straightening machine is generally affected by material properties, shape of plate (incoming) and plastic ratio along with that researcher concluded that straightening speed, elastic module and width of plate affect straightening capacity. As greater the straightening speed, width of plate smaller straightening capacity.

Ibiye Roberts [5] in this paper develop an idea to make a predictive model by using a concept of energy minimization of bending path of strip. This paper main focus on importance of correct leveler setting. Shape correction is very important in industries for achieving more flatness use lesser diameter of roller. In this study using industrial data and validate data with mathematical modal. This paper focus on importance of correct leveler setting.

V.B.Sarode et.al [6] in this paper presented a modification in straightening machine to overcome from the problem of tube not being straightened below 88.9mm due to less contact area because of misalignment and eccentricity of roller and pin. This paper gives importance of alignment in roller and pin because misalignment leads to uneven distribution of pressure applying on roller leads to produce unwanted bend in the tube. To overcome from this problem in place of changing component author design a pin which is match the centre of upper roller and lower roller. Designing of pin contain calculation of pin, selection of material, calculating stresses acting on pin by usingANSYS. This paper concluded that misalignment of roller creating a problem in straightening.

Xue-ying huang [7] this paper present a multi-point flexible straightening process which is verified by numerical simulation and experimental analysis of different material and initial shape. In this system.Upper die and lower die having individual punch, to achieve different curvature adjusting the position of each punch. It has two step in first unified the curvature of plate and in second step uniform curvature is straightened by over bent. Experiment carried out over three different material and profile and the result shows that this method remove difference of initial curvature, as we decrease bending radius the uniform. Curvature is also decreases so this process is suitable for different material metal profile.

Author	Title	Journal	Methodology	Remark
J. Mischke (8)	Simulation of the roller	JMPT,	Computer	Elaborated model is
	straightening process	ELSEVIER	simulation	compatible with
		Publisher		straightening system
BA. Behrens	Development of an	Journal of	3D Simulation	Proposed model is
et.al (9)	analytical 3D – simulation	material	using MATLAB,	validate with
	model of the levelling	processing	Experimental	experimental data
	process	technology		
A. Krasovskyy	Material Characterization	Steel Res.	Experimental-	spring back in forming
et.al(10)	for Reliable and Efficient	Int. 77	numerical approach	simulation improved
	Spring back Prediction in			By using advanced
	Sheet Metal Forming			material models
G. schleinzer	Residual stress formation	IJMS	Chaboche's	Improvement in
et.al(11)	during the roller		multiple	numerical model as
	straightening of railway		component non –	compare to previous
	rails		linear kinematic	model
			hardening model	
			and FEM	

III. SUMMARY OF RESEARCH PAPER

International Journal of Advance Research in Science and Engineering

Volume No. 11, Issue No. 03, March 2022

www.ijarse.com

Yongseok	A new model for the	ISIJ	Numerical method,	Predictive model
CHO (12)	prediction of evolution of		FEM	accuracy is comparable
	the residual stresses in			to FEM
	tension levelling			
Kee - cheol	Development of a Finite	ISIJ	FEM	FEM result were 20%
PARK (13)	Element Analysis Program			of experimental range.
	for Roller Leveling and			
	Application for Removing			
	Blanking Bow Defects of			
	Thin Steel Sheet			
E. Silvestre	Roll levelling semi-	Journal of	Semi analytical,	Semi analytical model
et.al(14)	analytical model for	Physics	FEM	is able to predict basic
	process optimization			levelling variable
V. N. Shinkin	Asymmetric Three-Roller	Steel in	Analytical method	Proposed system is
(15)	Sheet-Bending Systems in	Translation		useful in metallurgical
	Steel-Pipe Production			plant

IV. CONCLUSION

After referred lot of research paper it is concluded that a number of methodology are available but above paper gives an idea about determining roller diameter. Clear concept related topitch of the roller, roller speed and also material selection. Above papers explain importance of roller intermesh and pressure setting for straightness &many key point which is helpful for developing a straightener machine easily as well as time consuming.

REFERENCES

- V. N. Shinkin, "arithmetical method of calculation of power parameters of twelve roller straightening machine" CIS Iron and Steel Review — Vol. 12 (2016), pp. 40–44
- [2] Krishna jadhav et.al, "Design and Development of Strip Straightening Machine", IJRESM Volume-2, Issue-6, June-2019, pp. no- 164-165
- [3] Markus gruber et.al, " A strategy for controlled setting of flatness and residual stress distribution in sheet metal via roller levelling", ICTP 2017, Procedia Engineering 207, pp. 1332-1337
- [4] Wang yong- qin, "evaluation of straightening capacity of plate roll straightener", J.Cent. South University. (2012) 19: 2477–2481
- [5] Ibiye Roberts's et.al, "optimal selection of machine parameters in tension levelling of sheet metals", semantic scholar.org, (2012) pp.1-6.
- [6] V.b.sarode et.al, "modification of tube straightening machine", International Journal of modern trend in Engineering and Research, volume-04, pp. no: 22-29

www.ijarse.com

- [7] Xue-ying huang et.al, "multi-point flexible straightening process by reciprocating bending for metal profile", nonferrous metals society of china, published by Elsevier Ltd & science press pp. no – 2039-2050.
- [8] J. Mischke and J. Jonca "Simulation of the roller straightening process," Journal of Materials Processing Technology Journal of Material Processing Technology, 34, (1992), 265-272.
- [9] B.A. Behrens, R. Krimm, T.EI Nadi, "Development of an analytical 3D simulation model of the levelling process", Journal of Material processing Technology,2011, pp.1060-1068
- [10] A. Krasovskyy, W. Schmitt, H. Riedel, Material Characterization for Reliable and Efficient Spring back Prediction in Sheet Metal Forming, Steel Res. Int. 77 (2006) 747-753.
- [11] G. Schleinzer, F.D. Fischer, "Residual stress formation during the roller straightening of railway rails", International Journal of Mechanical Science, 2001, vol. 43 pp. no 2281-2295.
- [12] Yongseok CHO, hosung YE, Sangmoo HWANG, "A New model for the prediction of Evolution of the residual stresses in tension levelling", ISIJ International , 2003, vol.53, pp. 1436-1442
- [13] Kee cheol PARK et.al, "Development of a Finite Element Analysis Program for Roller Leveling and Application for Removing Blanking Bow Defects of Thin Steel Sheet", ISIJ International, Vol. 42 (2002), No. 9, pp. 990–999
- [14] E. Silvestre et.al, "Roll levelling semi-analytical model for process optimization", Journal of Physics Conference Series 734 (2016) pp.1-5
- [15] V. N. Shinkin, "Asymmetric Three-Roller Sheet-Bending Systems in Steel-Pipe Production", Steel in Translation, 2017, Vol. 47, No. 4, pp. 235–240

V. BIOGRAPHIES

"Er. Tanmaymani K Sharma"		
Completed B-tech (Mechanical) &		
Pursuing M-Tech (Design) From		
 School of Engineering and		
Technology, Sandip University,		
Nashik.		
"Dr. Anil S Maheshwari",		
Professor in Mechanical		
 Engineering Department, School		
of Engineering and Technology,		
Sandip University, Nashik.		