Volume No. 11, Issue No. 02, February 2022 www.ijarse.com

V₄-Vertex Magic labeling for Bloom Graph

S.Kavitha¹, V.L.Stella Arputha Mary²

¹Research Scholar (Full Time), Register Number 19212212092007

Department of Mathematics,

St.Mary's College (Autonomous), Thoothukudi, Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli-627012, Tamilnadu, India

¹kavithavikunth@gmail.com

²Assistant Professor, Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi ²drstellaarputha@gmail.com

Abstract

Let V_4 be an abelian group under multiplication. Let $g : E(G) \to V_4 - \{1\}$. The vertex magic labeling on V_4 is defined as the vertex labeling $g^* : V(G) \to V_4$ such that $g^*(v) = \prod_u g(uv)$ where the product is taken over all edges uv of G incident at v is a constant. A graph is said to be V_4 — magic if its admits a vertex magic labeling on V_4 . In this paper we investigate the results on Bloom graph and Cylinder graph.

Keyword: $B(m, n), C_{m,n}$

AMS subject classification (2010): 05C78

1. Introduction

Laid foundation by Euler in the 18th Century, Graph Theory grew wider by Sedlack, Kong, Lee and Sun. Sedlack introduced Magic Labeling Bloom and Golomb connected Graph labeling to a wide range of applications such as Coding theory, Communication design, Radar, Circuit design, Astronomy, Network and X-ray crystallography.

Let V_4 be an abelian group under multiplication. Let $g: E(G) \to V_4 - \{1\}$. The vertex magic labeling on V_4 is defined as the vertex labeling $g^*: V(G) \to V_4$ such that $g^*(v) = \prod_u g(uv)$ where the product is taken over all edges uv of G incident at v is a constant. A graph is said to be V_4 - magic if its admits a vertex magic labeling on V_4 .

The result is verified for Bloom graph and Cylinder graph.

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

2. **Preliminaries:**

Bloom Graph: The Bloom graph B(m,n), m, n > 1 is defined as follows:

$$V(B(m,n)) = \{(x,y) : 0 \le x \le m-1, 0 \le y \le n-1\}$$

Two distinct vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if

(i)
$$x_1 = x_2 - 1$$
 and $y_1 = y_2$

- (ii) $x_1 = x_2 = 0$ and $y_1 + 1 \equiv y_2 \mod n$
- (iii) $x_1 = x_2 = m$ and $y_1 + 1 \equiv y_2 \mod n$
- (iv) $x_1 = x_2 1$ and $y_1 + 1 \equiv y_2 \mod n$

(i) condition describes vertical edges

(ii) and (iii) condition describes horizontal edges in the topmost and lowermost rows respectively.

(iv) condition describes the slant edges.

3. Main Results:

Theorem 3.1: Bloom graph B(m,n) is a V_4 -magic graph.

Proof: :

Let G be a Bloom graph B(m, n).

Let the vertex set V(G) be $\{(x, y) : 0 \le x \le m - 1; 0 \le y \le n - 1\}$.

Define a function $g: E(G) \to V_4 - \{1\}$

Let the edge labeling of G be

(i) Label the edges joining the vertices (0, y) and $(0, y + 1 \pmod{n})$ as "*i*" if they are adjacent.

(ii) Label the edges joining the vertices (m-1, y) and $(m+1, y+1 \pmod{n})$ as "*i*" if they are adjacent

(iii) Label the edges joining the vertices (x, y) and $(x + 1, y + 1 \pmod{n})$ as "-i" if they are adjacent.

(iv) Label the edges joining the vertices (x, y) and (x + 1, y) as " -i" if they are adjacent.

Then $g^*: V(G) o V_4 - \{1\}$ is such that

Volume No. 11, Issue No. 02, February 2022 www.ijarse.com

 \Box

$$g^*(x_i, y_j) = 1$$
 for all $i = 0$ to $m - 1; j = 0$ to $n - 1$

Thus each vertex of the Bloom graph gets the magic number "1" satisfying the V_4 -vertex magic labeling, Bloom graph becomes a V_4 - magic graph in all cases, whether m and n are either odd or even or both even or both odd.

Illustration: B(4,8) both m, n – even

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

IJARSE ISSN 2319 - 8354

Illustration: B(3,7) both m,n – odd

12 | Page

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

IJARSE ISSN 2319 - 8354

Illustration: B(3,4)

Theorem 3.2: For $m, n \ge 2$, the cylinder graph $C_{m,n}$ is a V_4 -magic graph. **Proof:** Let G be a cylinder graph $C_{m,n}$.

Volume No. 11, Issue No. 02, February 2022 www.ijarse.com

Let
$$V(G) = \{u_{pq} : 1 \le p \le m; 1 \le q \le n-1\}$$
 be the vertex set of G .
Let $E(G) = \{u_{pq}u_{p,q+1} : 1 \le p \le m, 1 \le q \le n-1\} \cup \cup \{u_{pq}u_{p+1,q} : 1 \le p \le m-1, 1 \le q \le n\}$
 $[u_{p,n+1} = u_{p_1}]$
Let us define a function $g: E(G) \to V_4 - \{1\}$ such that
 $g(u_{pq}u_{pq+1}) = i$ for $p = 1, m, 1 \le q \le n$
 $g(u_{pq}u_{pq+1}) = -1$ for $2 \le p \le m-1, 1 \le q \le n$
 $g(u_{pq}u_{p+1,q}) = -1$ for $1 \le p \le m-1, 1 \le q \le n$
Then $g^*: V(G) \to V_4 - \{1\}$ is
 $g^*(u_{pq}) = 1$, for $1 \le p \le m; 1 \le q \le n$

This labeling holds for all cases whether m and n are either odd or even and $m, n \ge 2$. Hence Cylinder graph becomes a V₄- vertex magic Labeling for $m, n \ge 2$. Illustration: $C_{6,8}$

IJARSE ISSN 2319 - 8354

14 | Page

Volume No. 11, Issue No. 02, February 2022 www.ijarse.com

Illustration: $C_{7,9}$

Remark:

For $m, n \ge 2$, cylinder graph satisfies V_4 - vertex magic graph labeling when i is replaced by -i in all four cases throughout the graph. Thus Cylinder graph becomes V_4 -magic graph.

Reference:

- [1]. A. Mahalakshmi, Yamini Latha, A Study of Edge labeling of a Bloom graph B(m, n) and its topological properties, *JETIR*, Vol 6, Issue 6, June 2019.
- [2]. Signer and Signed Product cordial Labeling of cylinder Graphs and Banana Tree, *IJMTT*, Vol 65, Issue 3, March 2019.
- [3]. V. I. Stella Arputha Mary, S. Navaneethakrishnan, A. Nagarajan, Z_{4p²}- Magic Labeling for some special graphs, *International Journal of Mathematics and Soft computing.*, 3(3),61-70,2013.
- [4]. S. Amutha, K.M. Kathiresan, *The existence and construction of certain types of labeling for graphs*, Ph.D Thesis, Madurai Kamaraj University, 2006.
- [5]. Osama Rashad El-Gendy, On BOI-Algebra, *International Journal of Mathemtics and Computer Applications Research (IJMCAR)*, Vol 9, Issue 2, pp. 13-28.
- [6]. J. A. Gallian, A dynamic survey graph labeling, *Electronic Journal of Combinatorics*, 17, D56, 2010.
- [7]. A. Sangeetha Devi and M.M. Shanmugapriya, Efficient Dominator Coloring in Graphs, *International Journal of Mathematics and Computer Application Research (IJMCAR)*, Vol 6, Issue 3, pp. 1-8.

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

[8]. K. Radha and N. Kumaravel, The Degree of an Edge in Cartesian product and Composition of Two Fuzzy Graphs, *International Journal of Applied Mathematics & Statistical Sciences (JAMSS)*, Vol 2, Issue 2, pp. 65-78.