Volume No 07, Issue No. 01, January 2018 www.ijarse.com

COMMON FIXED POINT THEOREMS IN *M*-FUZZY METRIC SPACE

Varsha Mandwariya¹and Anil Rajput²

¹Department of Mathematics, Sant Hirdaram Girls College, Bhopal, India Email:advaitmandwariya@gmail.com ²Department of Mathematics, CSA Govt. PG College, Sehore MP India dranilrajput@hotmail.com

Abstract: In this paper we prove common fixed point theorem on \mathcal{M} - fuzzy metric space under the condition of compatibility on \mathcal{M} - fuzzy metric spaces.Our results generalize and modify several comparable results in the literature.

Keywords: Common fixed point theorem, \mathcal{M} - fuzzy metric spaces, compatible mapping.

Introduction:

In 1965, Zadeh [19] introduced the famous theory of fuzzy sets and used it as a tool for dealing with uncertainty arising out of lack of information about certain complex system. Deng [2], Erceg [4], Kaleva and Seikkala[7] and Kramosil and Michalek [8] introduced the concepts of fuzzy metric spaces in different ways. George and veeramani [5] modified the concept of fuzzy metric spaces due to Kramosil and Michalek [8] and defined the Hausdorff topology of fuzzy metric spaces. Many authors [1, 6, 9, 10, 11, 13, 14, 17] have studied the fixed point theory in fuzzy metric spaces. Vashuki [18] obtained the fuzzy version of common fixed point theorem for using extra conditions. There have been number of generalization of Metric spaces. One such generalized metric space on D-metric space initiated by Dhage [3] in 1992.

He proved some regulation fixed points for a self map satisfying a contraction for complete and bounded D- metric spaces. Rhoades [12] generalized Dhage's contractive condition by increasing the number of factors an proved the existence of unique fixed point f self- map in D-metric space.

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

Sedgi and Shobe [15] modified the definition of D- metric space and introduced D*-metric space and proved some basic properties in D*-metric space .Using the concept of D*-metric Sedgi and Shobe[15] defined the \mathcal{M} - fuzzy metric space and proved a common fixed point theorem in \mathcal{M} fuzzy metric spaces. In this paper we prove common fixed point theorem using compatible mapping on \mathcal{M} -fuzzy metric space

2. PRELIMINARIES

2.1 Definition: A binary operation*: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous *t*-norm if * satisfies the following conditions:

- (i) * is commutative and associative,
- (ii) * is continuous,
- (iii)a * 1 = a for all $a \in [0, 1]$,
- (iv) $a * b \le c * d$, whenever $a \le c$ and $b \le d$, for all $a, b, c, d \in [0, 1]$.

Example of *t* -norm are a * b = a b and $a * b = \min \{a, b\}$

2.2Definition:A 3-tuple (X, \mathcal{M} , *) is said to be \mathcal{M} - fuzzy metric space if X is an arbitrary set, * is a continuoust -norm and \mathcal{M} is fuzzy sets in $X^3 \times (0, \infty)$ satisfying the following conditions, for all $x, y, z \in X, s, t > 0$.

 $(\text{FM-1}) \mathcal{M}(x, y, z, t) > 0,$

(FM-2) $\mathcal{M}(x, y, z, t) = 1$ for all t > 0 if and only if x = y = z,

(FM-3) $\mathcal{M}(x, y, z, t) = \mathcal{M}(p\{x, y, z\}, t)$ (symmetry), where p is a permutation function,

(FM-4) $\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \leq \mathcal{M}(x, y, z, t + s),$

(FM-5) $\mathcal{M}(x, y, z, \cdot)$: $(0, \infty) \to [0, 1]$ is continuous.

2.3 Example: Let (X, d) be a metric space. Denote a * b = a.b for all $a, b \in [0, 1]$. For each $t \in]0, \infty[$, let $\mathcal{M}(x, y, zt) = \frac{t}{t + D(x, y, z)}$

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

where $D(x, y, z) = \max \{d(x, y), d(y, z), d(x, z)\}$ for all $x, y, z \in X$. Then $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space. We call the \mathcal{M} -fuzzy metric \mathcal{M} , induced by the metric d, as the standard \mathcal{M} -fuzzy metric metric space.

2.4 Definition: A sequence $\{x_n\}$ in a \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ is called Cauchy sequence if and only if for each $0 < \varepsilon < 1$ and t > 0, there exits $n_0 \in \mathbb{N}$ such that $\mathbb{M}(x_n, x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_0$.

The sequence $\{x_n\}$ is said to converges to a point x in X (i.e. $\lim_{n \to \infty} x_n = x$) if $\lim_{n \to \infty} \mathcal{M}(x, x, x_n, t) = 1$ for all t > 0.

A \mathcal{M} -fuzzy metric space (X, \mathcal{M} , *) is said to be complete if every Cauchy sequence in it converges to a point in it.

2.5 Definition: Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. \mathcal{M} is said to be continuous function on $X^3 \times (0, \infty)$ if $\lim_{n \to \infty} \mathcal{M}(x_n, y_n, z_n, t_n) = \mathcal{M}(x, y, zt)$

Whenever a sequence $\{(x_n, y_n, z_n, t_n)\}$ in $X^3 \times (0, \infty)$ converges to a point (x, y, z, t) in $X^3 \times (0, \infty)$, i.e. $\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y, \lim_{n \to \infty} z_n = z$ and $\lim_{n \to \infty} \mathcal{M}(x, y, z, t_n) = \mathcal{M}(x, y, zt)$.

2.6 Definition: Let S and T be self mapping of \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ are said to be weakly compatible if they commute at a coincidence point, i.e. Sx = Tx implies that STx = STx

2.7 Definition: Let S and T be self mapping of \mathcal{M} - fuzzy metric space (X, $\mathcal{M}, *$) are said to be compatible if for all t > 0

 $\lim_{n\to\infty} \mathcal{M}\left(\mathrm{ST}x_n, TSx_n, TSx_n, t\right) = 1$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = x$ for some x in X **2.8Lemma:** Let(X, \mathcal{M} , *) be a fuzzy metric space. For any x, $y \in X$ and y > 0, we have (i) $\mathcal{M}(x, x, y, t = \mathcal{M}(x, y, y, t))$.

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

(ii) $\mathcal{M}(x, y, z, .)$ = is nondecreasing.

Proof: (i) Let $\varepsilon > 0$. For by (FM-4) we have

 $(1.1) \mathcal{M}(x, x, y, \varepsilon + t) \geq \mathcal{M}(x, x, x, \varepsilon) * \mathcal{M}(x, y, y, t) = \mathcal{M}(x, y, y, t),$

(1.2) $\mathcal{M}(y, y, x, \varepsilon + t) \geq \mathcal{M}(y, y, y, \varepsilon) * \mathcal{M}(y, x, x, t) = \mathcal{M}(y, x, x, t).$

By taking limit $\varepsilon \to 0$ in (1.1) and (1.2), we get $\mathcal{M}(x, x, y, t) = \mathcal{M}(x, y, y, t)$.

(ii) By (FM-4) we have $\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \leq \mathcal{M}(x, y, z, t + s)$ for any $z, a \in X$ and s, t > 0. Let a = z, then we have $\mathcal{M}(x, y, z, t) * \mathcal{M}(z, z, z, s) \leq \mathcal{M}(x, y, z, t + s)$ so that $\mathcal{M}(x, y, z, t) = \mathcal{M}(x, y, z, t + s)$ so that $\mathcal{M}(x, y, z, t) = \mathcal{M}(x, y, z, t + s)$ so that $\mathcal{M}(x, y, z, t) = \mathcal{M}(x, y, z, t) + \mathcal{M}(x, y, z, t) = \mathcal{M}(x, y, z, t + s)$

 $(x, y, z, t + s) \ge \mathcal{M}(x, y, z, t).$

In the following example, we know that both d -metric and fuzzy metric induce a \mathcal{M} -fuzzy metric.

2.9 Lemma: Let $(X, \mathcal{M}, *)$ be a \mathcal{M} - fuzzy metric space. If there exist $k \in (0, 1)$ such that for all $x, y \in X$

 $\mathcal{M}(x, y, y, \text{kt}) \geq \mathcal{M}(x, y, y, t)$ for all t > 0 then x = y.

3. MAIN RESULT

3.1 Theorem:Let(X, \mathcal{M} , *) be a complete fuzzy metric space. Let A, B, S, T, P and Q be six self –mappingssatisfying the following condition:

(i) $P(X) \subseteq AB(X)$ and $Q(X) \subseteq ST(X)$.

- (ii) Pair (P, AB) and (Q, ST) are weakly compatible and AB = BA, PB = BP, SQ = QS, QT = TQ and ST = TS.
- (iii) There exists a number $k \in (0, 1)$ such that

 $\mathcal{M}(Px, Qy, ABx, kt) * \mathcal{M}(ABx, Px, Px, kt)$

$$\geq \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(STy, ABx, ABx, t)+r(t)\frac{\mathcal{M}(STy, Px, Px, t)}{\mathcal{M}(Px, ABx, ABx, t)} \end{pmatrix}, \\ \mathcal{M}(Px, Px, Qy, t) * \mathcal{M}(Qy, STy, STy, t) \end{bmatrix} \right\}$$

IJARSE

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

for all x, $y \in X$ all t > 0 and some $k \in [0, 1]$ where p, q, $r : \mathbb{R}^+ \to (0, 1]$ be three function such that p(t) + q(t) + r(t) = 1.

If the range of the subspaces P(X) or AB(X) or Q(X) or ST(X) is complete, then A, B, S, T, P and Q have a unique common fixed point in X.

Proof:By @, $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, so $\{y_n\}$ converges to a point $z \in X$. Since $\{Px_{2n}\}, \{Qx_{2n+1}\}, \{ABx_{2n+1}\}$ and $\{STx_{2n+1}\}$ are subsequences of $\{y_n\}$, they also converges to the same point z.

Since $P(X) \subset AB(X)$, there exists a point $w \in X$ such that ABw = z

Put x = w and $y = x_{2n+1}$ in inequality (iii), we get

 $\mathcal{M}(Pw, Qx_{2n+1}, ABw, kt) * \mathcal{M}(ABw, Pw, Pw, kt)$

$$\geq \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(STx_{2n+1}, ABw, ABw, t) + r(t)\frac{\mathcal{M}(STx_{2n+1}, Pw, Pw, t)}{\mathcal{M}(Pw, ABw, ABw, t)} \end{pmatrix}, \\ \mathcal{M}(Pw, Pw, Qx_{2n+1}, t) * \mathcal{M}(Qx_{2n+1}, STx_{2n+1}, STx_{2n+1}, t) \end{bmatrix} \right\}$$

Taking limit as $\rightarrow \infty$, we have

$$\mathcal{M}(Pw, z, z, kt) * \mathcal{M}(z, Pw, Pw, kt) \geq \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(z, z, z, t) + r(t)\frac{\mathcal{M}(z, Pw, Pw, t)}{\mathcal{M}(Pw, z, z, t)} \end{pmatrix}, \\ \mathcal{M}(Pw, Pw, z, t) * \mathcal{M}(z, z, z, t) \end{bmatrix} \right\}$$

$$\mathcal{M}(Pw, z, Pw, 2kt) \ge \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(z, z, z, t) + r(t)\frac{\mathcal{M}(Pw, z, z, t)}{\mathcal{M}(Pw, z, z, t)} \end{pmatrix}, \\ \mathcal{M}(Pw, z, z, t) * \mathcal{M}(z, z, z, t) \end{bmatrix} \right\}$$

$$\mathcal{M}(Pw, z, Pw, \mathsf{k}t) \ge \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(z, z, z, t) + r(t)\frac{\mathcal{M}(\mathsf{Pw}, z, z, t)}{\mathcal{M}(\mathsf{Pw}, z, z, t)} \right), \\ \mathcal{M}(\mathsf{Pw}, z, z, t) * \mathcal{M}(z, z, z, t) \end{bmatrix}$$

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

 $\mathcal{M}(Pw, z, z, kt) \ge \min \begin{cases} (p(t)+q(t)+r(t)), \\ \mathcal{M}(Pw, z, z, t) \ge 1 \end{bmatrix}$ $\mathcal{M}(Pw, z, z, kt) \ge \min \begin{cases} 1, \mathcal{M}(Pw, z, z, t) \ge 1, \\ 1, \mathcal{M}(Pw, z, z, kt) \ge 2 \mathcal{M} (Pw, z, z, t) \end{cases}$ $\mathcal{M}(Pw, z, z, kt) \ge \mathcal{M} (Pw, z, z, t)$ $\mathcal{B}y \text{ lemma } (2.9), Pw = z$ $\mathcal{T}herefore ABw = Pw = z$ Since Q(X) \subset ST(X), there exists a point $v \in X$ such that STv = z

Put x = w and y = v in inequality (iii), we get

$$\mathcal{M}(Pw, Qv, ABw, kt) * \mathcal{M}(ABw, Pw, Pw, kt)$$

$$\geq \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(ST\nu, ABw, ABw, t) + r(t)\frac{\mathcal{M}(ST\nu, Pw, Pw, t)}{\mathcal{M}(Pw, ABw, ABw, t)} \end{pmatrix}, \\ \mathcal{M}(Pw, Pw, Q\nu, t) * \mathcal{M}(Q\nu, ST\nu, ST\nu, t) \end{bmatrix} \right\}$$

Taking limit as $\rightarrow \infty$, we have

$$\mathcal{M}(z, Qv, z, kt) * \mathcal{M}(z, z, z, kt) \ge \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(z, z, z, t)+r(t)\frac{\mathcal{M}(z, z, z, t)}{\mathcal{M}(z, z, z, t)} \right), \\ \mathcal{M}(z, z, Qv, t) * \mathcal{M}(Qv, z, z, t) \right] \end{cases}$$

$$\mathcal{M}(Qv, z, z, kt) * 1 \ge \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(z, z, z, t)+r(t)\frac{\mathcal{M}(z, z, z, t)}{\mathcal{M}(z, z, z, t)} \right), \\ \mathcal{M}(z, z, z, t) \end{cases}$$

$$\mathcal{M}(Qv, z, z, kt) \ge \min \begin{cases} \left(p(t)+q(t)+r(t) \right), \\ 1 \end{cases}$$

$$\mathcal{M}(Qv, z, z, kt) \ge \min \{1, 1\}$$

$$\mathcal{M}(Qv, z, z, kt) \ge 1$$

$$STv = Qv = z$$
Therefore $ABw = Pw = STv = Qv = z$

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

Since the pair (P, AB) is weakly compatible, therefore ABw = Pw implies that PABw = ABPwi.e. Pz = ABz

Now we show that *z* is a fixed point of *P*.

Putting x = z and y = v in inequality (iii), we have

 $\mathcal{M}(Pz, Qv, ABz, kt) * \mathcal{M}(ABz, Pz, Pz, kt)$

$$\geq \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(ST\nu, ABz, ABz, t) + r(t)\frac{\mathcal{M}(ST\nu, Pz, Pz, t)}{\mathcal{M}(Pz, ABz, ABz, t)} \right), \\ [\mathcal{M}(Pz, Pz, Q\nu, t) * \mathcal{M}(Q\nu, ST\nu, ST\nu, t)] \end{cases}$$

$$\mathcal{M}(Pz, z, Pz, kt) * \mathcal{M}(Pz, Pz, Pz, kt) \ge \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(z, Pz, Pz, t) + r(t)\frac{\mathcal{M}(z, Pz, Pz, t)}{\mathcal{M}(Pz, Pz, Pz, t)} \right), \\ [\mathcal{M}(Pz, Pz, z, t) * \mathcal{M}(z, z, z, t) \end{bmatrix} \end{cases}$$

$$\mathcal{M}(Pz, z, Pz, kt) * 1 \ge \min \begin{cases} \left(p(t)+q(t) + r(t) \right)\mathcal{M}(z, Pz, Pz, t), \\ [\mathcal{M}(Pz, z, z, t) * 1] \end{cases}$$

$$\mathcal{M}(Pz, z, z, kt) \ge \min \begin{cases} \mathcal{M}(Pz, z, z, t), \\ \mathcal{M}(Pz, z, z, t) \end{cases}$$

$$\mathcal{M}(Pz, z, z, kt) \ge \mathcal{M}(Pz, z, z, t)$$
By lemma (2.9), $Pz = z$
Therefore $ABz = Pz = z$

Similarly, pair of map (Q, ST) is weakly compatible, we have

$$Qz = STz = z$$

Now we show that Bz = z, by putting x = Bz and $y = x_{2n+1}$ in inequality (iii), we have

$$\mathcal{M}(PBz, Qx_{2n+1}, AB(Bz), kt) * \mathcal{M}(AB(Bz), PBz, PBz, kt)$$

 $\geq \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(\mathsf{ST}x_{2n+1},\mathsf{AB}(\mathsf{Bz}),\mathsf{AB}(\mathsf{Bz}),t) + r(t)\frac{\mathcal{M}(\mathsf{ST}x_{2n+1},\mathsf{PBz},\mathsf{PBz},t)}{\mathcal{M}(\mathsf{Pz},\mathsf{AB}(\mathsf{Bz}),t)} \right), \\ \left[\mathcal{M}(\mathsf{PBz},\mathsf{PBz},\mathsf{Qx}_{2n+1},t) * \mathcal{M}(\mathsf{Qx}_{2n+1},\mathsf{STx}_{2n+1},\mathsf{STx}_{2n+1},t) \right] \end{cases}$

IJARSE

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

Taking limit as $n \rightarrow \infty$ and using lemma 2.2, we have

Bz = z

Since ABz = z, therefore, ABz = Bz = STz = Pz = Qz = z

Finally we show that Tz = z, by putting x = z and y = Tz in inequality (iii), we have

 $\mathcal{M}(Pz, QTz, ABz, kt) * \mathcal{M}(ABz, Pz, Pz, kt)$

$$\geq \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(ST(Tz), ABz, ABz, t) + r(t)\frac{\mathcal{M}(ST(Tz), Pz, Pz, t)}{\mathcal{M}(Pz, ABz, ABz, t)} \right), \\ \mathcal{M}(Pz, Pz, QTz, t) * \mathcal{M}(QTz, ST(Tz), ST(Tz), t)] \end{cases}$$

$$\mathcal{M}(z, Tz, z, kt) * \mathcal{M}(z, z, z, kt) \geq \min \left\{ \begin{pmatrix} [p(t)+q(t)]\mathcal{M}(Tz, z, z, t)+r(t)\frac{\mathcal{M}(Tz, z, z, t)}{\mathcal{M}(z, z, z, t)} \end{pmatrix}, \\ \mathcal{M}(z, z, Tz, t) * \mathcal{M}(Tz, Tz, Tz, t) \end{bmatrix} \right\}$$

$$\mathcal{M}(z, Tz, z, kt) * 1 \geq \min \left\{ \begin{pmatrix} p(t)+q(t)+r(t)\mathcal{M}(Tz, z, z, t), \\ \mathcal{M}(z, z, Tz, t) * 1 \end{bmatrix} \right\}$$

$$\mathcal{M}(Tz, z, z, kt) \geq \min \left\{ \begin{array}{l} \mathcal{M}(Tz, z, z, t), \\ \mathcal{M}(z, z, Tz, t) \end{bmatrix} \right\}$$

$$\mathcal{M}(Tz, z, z, kt) \geq \mathcal{M}(Tz, z, z, kt)$$

Therefore Tz = z

HenceABz = Bz = STz = Pz = Qz = z

Uniqueness: Finally we prove that A, B, S, T, P and Qhave a unique common fixed point.

Let r be another common fixed point of A, B, S, T, P and Q. Then ABr = STr = Pr = Qr = rPut x = r and y = z in inequality (iii), we have

$$\mathcal{M}(Pr, Qz, ABr, kt) * \mathcal{M}(ABr, Pr, Pr, kt)$$

$$\geq \min \begin{cases} ([p(t)+q(t)]\mathcal{M}(STz, ABr, ABr, t)+r(t)\frac{\mathcal{M}M(STz, Pr, Pr, t)}{\mathcal{M}(Pr, ABr, ABr, t)}), \\ \mathcal{M}(Pr, Pr, Qz, t) * \mathcal{M}(Qz, STz, STz, t)] \end{cases}$$

IJARSE

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

$$\begin{split} \mathcal{M}(r, z, r, kt) * \mathcal{M}(r, r, r, kt) &\geq \min \begin{cases} \left([p(t)+q(t)]\mathcal{M}(z, r, r, t)+r(t)\frac{\mathcal{M}(z, r, r, t)}{\mathcal{M}(r, r, r, t)} \right), \\ \mathcal{M}(r, z, r, t) * \mathcal{M}(z, z, z, t) \end{bmatrix} \\ \end{split}$$
$$\begin{aligned} \mathcal{M}(r, z, r, kt) * 1 &\geq \min \begin{cases} \left(p(t)+q(t)+r(t) \right)\mathcal{M}(z, r, r, t), \\ \mathcal{M}(r, r, z, t) * 1 \end{bmatrix} \\ \end{split}$$
$$\begin{aligned} \mathcal{M}(z, r, r, kt) &\geq \min \begin{cases} \left(p(t)+q(t)+r(t) \right)\mathcal{M}(z, r, r, t), \\ \mathcal{M}(z, r, r, t) \end{cases} \\ \end{cases} \\ \end{split}$$
$$\begin{aligned} \mathcal{M}(z, r, r, kt) &\geq \min \begin{cases} \mathcal{M}(z, r, r, t), \\ \mathcal{M}(z, r, r, t) \end{cases} \\ \end{aligned}$$
$$\begin{aligned} \mathcal{M}(z, r, r, kt) &\geq \min \begin{cases} \mathcal{M}(z, r, r, t), \\ \mathcal{M}(z, r, r, t) \end{cases} \\ \end{aligned}$$
$$\begin{aligned} \mathcal{M}(z, r, r, kt) &\geq \mathbb{M}(z, r, r, t) \end{cases} \\ \end{aligned}$$

This completes the proof of theorem.

3.1.2 Corollary:Let(X, \mathcal{M} , *) be a complete fuzzy metric space. Let A, S, P and Q be six self – mappingssatisfying the following condition:

(i)P(X) \subseteq A(X) and Q(X) \subseteq S(X).

(ii) Pair (P, S) and (Q, A) are weakly compatible.

(iii)There exists a number $k \in (0, 1)$ such that

$$\mathcal{M}(Px, Qy, Ax, kt) * \mathcal{M}(Ax, Px, Px, kt)$$

$$\geq \min \left\{ \begin{pmatrix} [p(t) + q(t)] \mathcal{M}(Sy, Ax, Ax, t) + r(t) \frac{\mathcal{M}(Sy, Px, Px, t)}{\mathcal{M}(Px, Ax, Ax, t)} \end{pmatrix}, \\ \mathcal{M}(Px, Px, Qy, t) * \mathcal{M}(Qy, Sy, Sy, t) \end{bmatrix} \right\}$$

for all $x, y \in X$ all t > 0 and some $k \in (0, 1)$ where $p, q, r : \mathbb{R}^+ \to (0, 1]$ be three function such that p(t) + q(t) + r(t) = 1.

If the range of the one subspaces complete, then A, S, P and Q have a unique common fixed point in X.

IJARSE

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

REFERENCES

- [1]. Chang, J.C., Chen, H., Shyu, S.M. and Lian W.C.: Fixed point theorem in fuzzy real line, Computers and Mathematics with Applications, 47 (2004), 845-851.
- [2]. Deng, Z. K.: Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1) (1982), 74-95.
- [3]. Dhage, B. C., Generalised metric spaces and mapping with fixed point.Bull. Calcutta Math. Soc., 84 (4) (1992), 329-336.
- [4]. Erceg, M. A.: Metric spaces in fuzzy set theory, J. Math. Anal. and Appl. 69 (1979), 205–230.
- [5]. George, A. and Veeramani, P.: On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
- [6]. Hadzic, O. and Pap, E.: Fixed point theorem in probabilistic metric spaces, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, vol.536, 2001.
- [7]. Kaleva, O. and Seikkala, S.: On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 215 229.
- [8]. Kramosil, O. and Michalek, J.: Fuzzy metric statistical metric spaces, Kybernetica (Praha), 11 (1975), 326 334.
- [9]. Lakshmikantham, V. and Vatsala, A. S.: Existence of fixed points of fuzzy mapping via theory of fuzzy differential equations, Journal of Computational and Applied mathematics, 113 (2000), 195-200.
- [10]. Mihet, D.: A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2004) 431-439.
- [11]. Nieto, J. J. and Rodriguez-Lopez J.: Existence of extremal solutions for quadratic fuzzy equations, Fixed Point Theory and Applications, 3 (2005), 321-342.
- [12]. Rhoades, B. E.: A fixed point theorem for generalized metric spaces, Int. J. Math. Sci., 19 (1) (1996), 145-153.
- [13]. Rodriguez-Lopez, J. and Ramaguera S.: The Housdorff fuzzy metric on compact sets, FuzzySets and Systems, 147 (2004) 273-283.
- [14]. Saadati, R. and Park, J. H.: On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
- [15]. Sedghi, S. and Shobe, N.: Fixed point theorem in M-fuzzy metric spaces with property (E), Advanced in Fuzzy Mathematics, 1(1) (2006), 55-65.
- [16]. Sharma, S.: Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127 (2002), 345-352.
- [17]. Song, G.: Comments on a common fixed point theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 135 (2003), 409-413.
- [18]. Vasuki, R.: Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
- [19]. Zadeh, L. A.: Fuzzy set, Information and Control, 8 (1965), 338-353.