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Abstract This paper aims to study the role of harvesting of phytoplankton population on the dynamical behaviour of 

toxin producing phytoplankton and zooplankton system. The toxin producing phytoplankton population is divided into 

two groups: susceptible phytoplankton population and infected phytoplankton population. Conditions of local stability of 

various equilibrium points are derived.  Further it is observed that harvesting helps to reduce the outbreak of disease in 

phytoplankton population.  
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I. Introduction   

Ecology and epidemiology are the research fields which are treated separately. But there are some common features 

between these fields and interacting species may suffer from various diseases and thus merging these fields may help to 

study the dynamics of such systems. Eco-epidemiology is the branch of science which studies both the ecological and 

epidemiological issues simultaneously.  

        Plankton are single-celled, microscopic organisms upon which almost all aquatic life is based. Phytoplankton, the 

plant form of plankton, are the primary producers, capable of photo-synthesis and stabilize  environment by consuming 

half of the universe carbon dioxide and release huge oxygen. Zooplankton, the animal form of plankton, eat other 

plankton, which in turn are the basic food source for fish and other aquatic animals. The significant feature associated 

with many phytoplankton is rapid increase of biomass followed by their rapid decrease after some fixed time period. 

This kind of rapidly increased phytoplankton density is called bloom, which is of two types:  Spring bloom and Red 

bloom. Spring bloom is seasonal and it occurs because of change in temperature and nutrient level of water depending 

on season. Red bloom is localized out break associated with change in water temperature and with greater salinity of 

water column and higher growth rates [1]. In algae bloom of phytoplankton, each alga being short-lived result in a high 

concentration of dead organic matter which starts to decay. The decaying process consumes dissolved oxygen in the 

water, resulting in hypoxiation and cause mass mortality of animals and plants. This mass mortality has adverse effects 

on human health, aquatic population, tourism, fisheries business, water quality and the ecosystem. Algal blooms called 

'Harmful Algal Blooms' (HABs) consist of phytoplankton which hav negative impact on other organisms causing mass 
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mortality through production of natural toxins, mechanical damage to other organisms, or by other means. For the 

control of such problems deep study of plankton system is required. 

The growth and bloom of toxin producing phytoplankton species is a complex process. The toxin producing 

phytoplankton reduces the grazing pressure of zooplankton and may terminate the planktonic bloom. Chattopadhyay et 

al. [2], [3] have investigated that toxin producing phytoplankton and toxic substances affect the growth of zooplankton 

population and phytoplankton zooplankton interaction. Anuj Kumar Sharma et al. [4] have shown that time delay can 

destabilize the otherwise stable non-zero equilibrium state of a toxin producing phytoplankton, zooplankton and 

dissolved nutrient system, by inducing Hopf-bifurcation when it crosses a certain threshold value. Viruses are the most 

abundant entities in the sea. These play a significant role on the survival, extinction, interaction of planktonic   

population. Several researchers have investigated the eco-epidemiological systems [5]-[13]. Sunita Gakkhar and Kuldeep 

Negi [14] investigated the dynamical behaviour of toxin producing phytoplankton infected by a viral disease and 

zooplankton system. 

    Reasonable harvesting policy is one of the important and interesting problems in ecology and economics. The 

exploitation of biological resources and harvesting of population species are commonly practiced in fishery, forestry, 

agriculture and wildlife management. Harvesting has sometimes been considered as a stabilizing factor [15], a 

destabilizing factor [16] or even an oscillation-inducing factor [17]. 

 In this paper, we propose a toxin producing phytoplankton zooplankton system with the assumption that some of the 

phytoplankton population is infected by a viral infection and there is harvesting of susceptible and infected 

phytoplankton population. It is assumed that infected phytoplankton population is more vulnerable to predation.  

  

II. The model 

Let )(tP  and )(tZ  be the toxin producing phytoplankton (TPP) and zooplankton plankton population respectively at 

time .t  In the presence of viral infection, total TPP population is divided into two categories: susceptible phytoplankton 

population )(tS  and infected phytoplankton population )(tI  such that  

     tItStP 
                          (1) 

The susceptible phytoplankton grow logistically. Infection is spread among phytoplankton population only. The infected 

population do not recover or become immune and is not capable of reproducing. However, they can affect the growth 

dynamics of the susceptible phytoplankton indirectly, for example by shading. The susceptible phytoplankton becomes 

infected following simple law of mass action.  A simple Lotka-Volterra form of interaction is assumed for 

phytoplankton-zooplankton populations. The phytoplankton liberates toxins instantaneously. The effect of toxin 

liberation decreases the growth of zooplankton according to Holling Type I functional response. There is harvesting of 

phytoplankton population. Using these basic assumptions the dynamics of the system can be governed by the following 

set of differential equations: 
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Where K, r are the carrying capacity and growth rate of phytoplankton population respectively. c  is rate of infection. b , 

e  are the rates at which zooplankton predates susceptible and infected phytoplankton respectively. g , h are the growth 

rates of zooplankton due to predation of susceptible, infected phytoplankton respectively.   is the natural death rate of 

infected phytoplankton population. d is mortality rate of zooplankton population due to natural death.   is the rate of 

toxin liberation by the toxin producing phytoplankton (TPP) population.   is the half-saturation constant for TPP 

population. ,1q  2q are the catchability coefficients of susceptible and infected phytoplankton populations, respectively. 

E  is the combined external effort devoted to non-selective harvesting of susceptible and infected phytoplankton 

population by the external harvester. All the parameters are assumed to be positive.  

  00 S ,   00 I ,   00 Z  are the initial conditions associated with the system (1). 

III. Boundedness of solution 

Lemma.  All the solutions of system (1) which initiate in 
3
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 dEq ,min 2   and bheg  . 
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Derivative of (2) w.r.t. time t, along the solution of (1) is given by 
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Introducing a positive number  we can write 
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Using theory of differential inequality, we obtain  
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Thus all the solutions of equations (1) that initiate in 
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IV. Equilibrium points 

 

Equilibrium point for the system (1) are given by 

(1) Trivial Equilibrium point  0,0,00 E . 
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 (3) The planer equilibrium point on S-I plane,  0,,3 ISE  , where  
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3 ,0, ZSE  on the S-Z plane is obtained as  

rdgEqrKg

gbK

rdgEqrK
Z

g

d
S











))((,

)(

))((
,

1

1''







  

 

 (5) The non-trivial equilibrium point   **** ,, ZISE  , where  

 

0
))(())((

)(

)()()( 21

* 







cKrgebKcreh

Kcred

EqbEqrehK

S




 



 
 

231 | P a g e  

 

 
0

*

`* 









h

Sgd
I and 02

*
* 




e

EqcS
Z


 










g

d
S

c

Eq *2
 

V. Spread of disease 

The basic reproductive ratio for the system (2.2) is given by 
Eq

cS
R

2

0
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

. This ratio gives the number of new 

infected cases arising from the introduction of unit infected phytoplankton species into the susceptible phytoplankton 

population. From this ratio we can find that whether the infection will spread or die off. The infection will persist is 

10 R , otherwise the infection will die out. From the above calculated value of 0R , it is observed that the basic 

reproductive ratio is directly proportional to the host density and is inversely proportional to the harvesting. Thus 

harvesting enhances the critical host density required for the onset of disease and this critical value increases with the 

effort E. Thus when harvesting process is employed, the system becomes able to support higher number of susceptible 

phytoplankton population. Thus harvesting process helps to reduce the outbreak of disease.  

VI. Stability analysis 

Now we will discuss the local behaviour of the system around each of the equilibrium points. The Variational matrix 

around the point  ZISE ,,   is given by: 
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The eigenvalues for 0V are dEqEqr  ,, 21  , which show that 0E will be stable if E, the effort level satisfies 

1q

r
E  , otherwise 0E will be a point and  stable in I-Z direction but unstable in S direction.  

The variational matrix for 1E  is 
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Therefore 1E  is locally asymptotically stable provided 
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And the characteristic equation is given by 
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The quadratic equation gives negative eigenvalues. The third eigen value is Y3 . Hence 2E  is locally 

asymptotically stable for 03  , and unstable in the direction of Z if 03  . 
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The characteristic equation is given by 
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VII. Conclusions  

In this paper, we have investigated the effect of harvesting of phytoplankton population on the dynamical behaviour of 

toxin producing phytoplankton and zooplankton system. It is assumed that some of phytoplankton species are infected by 

viral diseases and thus dividing the total phytoplankton population into two parts, namely susceptible phytoplankton 

population and infected phytoplankton population. The Infected phytoplankton are more vulnerable to predation. The 

resulting three dimensional mathematical model has been studied for local stability of various equilibrium points. It is 

observed that harvesting helps to reduce the outbreak of disease in phytoplankton species. 
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