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Abstract . Let D,p(z) denote the polar derivative of a polynomial p(z) of degree n with

respect . In this paper, we obtam certain integral inequalities for the polar derivative D, of
Te

polynomials of the form p(z) := a,2" + ¥ ap,—,2" %, 1 < p < n having all zeros in the disc
v=y

|z| < Kk, k& < 1. Our result refines and generalizes many prior results involving both polar as

well as ordinary derivative.
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1. Introduction

Let F,, denote the space of complex polynomials F(z) := i a;z’ of degreen > 1. If p € F,
J=0

then concerning the estimate of |p'(z]| on the unit circle, we have the following well-known
result due to Bernstein [6].

max [p'(2)| < nmax |p(=)]. (1.1)

If we consider the class of polynomials f € F, having all zeros in |z| < 1, then the bound in
inequality (1.1) can be considerably improved. In fact, Turdan [16] proved that if p € F,, and
pl(z) has all zeros in |z| < 1, then inequality (1.1) can be replaced by

rlﬂla:'ilp ()] = 2|m|ah lp(2)]. (1.2)

As an extension of (1.2), it was shown by Malik [11] that if p € F,, has all zeros in |z| < k
where k& < 1, then

ll'nlaJiIP( z)| = mllnl : x [p(z)]. (1.3)

Since,

2w
{ [ 1pteniean)” = max )] as s - o
0

which is the basic result from Analysis (for example see [14], p-70 or [15], p-91), it is an
interesting problem to extend inequalities (1.1), (1.2) and (1.3) to L® spaces. In this direction

Zygmund [17] was the first who extended inequality (1.1) to L®, s > 1 spaces and proved the

following result.
D 1 g 1
{[penrao}” <nd [iperan) (14)
0 i
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Arestov [1] proved that inequality (1.4) remains true for 0 < s < 1 as well.

The result is best possible and equality holds for p(z) = ¢z", t # 0. If we let s — oo, we get
inequality (1.1).

As an extension of inequality (1.3), to L®, s = 0 space, we have the following inequality.

n{f|p sdﬁ} {f|1+£e*“'|3dﬂ} {f|p{e‘8 |Sdﬁ} (1.5)

Inequality (1.5) was found by Aziz [2].
As a generalization of inequality (1.5) Aziz and Ahemad [3] prmed that if p € F,, having all its
zeros in |z| <k, k<1, thenforeachs >0, p>1,g>1withp ! +¢g 1 =1,

-n{ 7|p(e“*)|3de} { f I +ke"’|ﬁdﬁ} { j 17 (%) |=’3cm} (1.6)
0

n—i

T
Consider the class of polynomials F,, = anz" + 3 apw2™ ¥, 1 < p < n of degree n. Fy,

v=p
1s a linear space and F,,; = F,,. For these class of polynomials Aziz and Shah [5] generalized

mnequality (1.6) and proved that, if p € F,,, having all zeros in |z| <k, k <1, then for s > 0

n-{7r|p(ew)|sdﬁ}% < {7|1+;.ﬁe°9|5dﬁ} {f|p *‘dﬁ} . (1.7)
0 0

For any complex number a consider the operator I, which maps a polynomial p(z) of
degree n into
Dap(z) := np(2) + (o — 2)p'(2).
The operator Dyp(z) is known as polar differentiation of p(z) with respect to a. Dap(z) is a
polynomial of degree at most n — 1 and it generalizes the ordinary derivative in the sense that

lim Dap(z) = p'(z).

Q—roG ¥

As an extension of inequality (1.4) to the polar derivative of polynomial, we have the following

mequality.
27
{leQp |d6’} < n(la] +1 {
0

The inequality (1.8) was first proved by Govil et al [9] but the proof of the theorem was not
correct as was first pointed out by Aziz and Rather [4] who in the same paper have given

o |

-:m_____‘;],

(s} (1)

the correct proof of the inequality (1.8) for s > 1. The inequality (1.8) is then independently
proved by Rather [13] for s > 0. Recently, Dewan et al [7] proved that for every real or complex
number a with |a| > k and for each s = 0,

2

n—(|a|—m{7|p<ew)|3} <{ [ir+rey dﬁ} max [ D.p()|. (1.9)
0 0

233 | Page




International Journal of Advance Research in Science and Engineering
Volume No.07, Issue No.10, October 2018

IJARSE
www.ijarse.com ISSN: 2319-8354

In this paper, we besides extending inequality (1.9) to the class F,,, of polynomials, al

, also
find its generalization and refinement which in turn generalizes and refines many other results
proved earlier.

2. Main Results.

In this section we state our main results:

Theorem 1. Let p € Py, 1 < p < n, having all its zeros in |z| < k, k < 1, then for real
or complez numbers o, § with o] > A,, |8| <1 and s > 0

"

2 Ip(e) + —Em ) 1 2m
Malfm{lﬁamww?;LTﬁ} {fu+48ﬂwﬁ .

where

A n(|an| — _)kgﬂ + palan K 1
" n(lan| — )R+ plan]

m = mm |p( ).

Next, we prove the following result.

Theorem 2. Let p € F,,,, having all zeros in |z| < k, k <1, then for every real or complex
numbers o, § with o] > A,, 8| <1,5s>0, p>1, g>1withp ' +qg ' =1

27 i 2w 1
P y s as
el [ Senf < { Fuserran{ ] (o)
i] 0

k
(2.3)
where A, and m are same as defined in Theorem 1.

Letting ¢ — oc so that p =1 in Theorem 2, we get the following result

Corollary 2.1. Let p € F,, having all zeros in |z| < k, k < 1, then for every real or
complex numbers a, 3 with |a] > A, [B] < 1. s = 0,

n(lal 4, {/Mﬂ

Py

} {f”*“"’”‘*} {gglleap( I—M” m}. (2.4

Also if we let p — oo so that g = 1 in Theorem 2, then under the same hypothesis as Corollary
2.1, we get the following inequality.

-r:(|a|—44ﬂj{b7?‘pl:ew)+3‘; m } (1+A#){ZT(|D&p{ ‘ﬂ)|—”‘4“ )sdﬂ}%, (2.5)
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where A, and m are same as defined in Theorem 1.
If we divide both sides of inequality (2.3) by |a| and Let |a| — oo, we get the following result.

Corollary 2.2. Let p € F,, having all zeros in |z| < k, & < 1, then for every real or
complex number 8 with |3| <1, s >0, p>1, g>1withp ' +g 1 =1,

{ 'p( wy 4 B m| o’ < {f|1+.4 ew|mdr9}’“{f|p(e°é'|qmﬁ} (2.6)

Letting s — oo in inequality (2.3) and choosing argument of 3 suitably with |3 = 1, we
get the following refinement of a result due to Dewan, Singh and Lal [8].

Corollary 2.3. Let p € F,, having all zeros in |z| < k, & < 1, then for every real or
complex number o with |a| = A,

n(|al — Ay) A . nAy,
mg@ngap(ZJl > TAF”{ rlgllgrlclp(z}l + k—ﬁmﬁ Ip(z}l} + - min lp(=2)]-
Equivalently,
mex|Dep(2)] = 7= { (ol = A max ()] + (ol + D minlp2) ). @7)

3. Lemmas

For the proof of these theorems we need the following two lemmas which are due to Mir et

al [12].

Lemma 1. If p € F,,, having all its zeros in |z| < k where k < 1 and g(z) = z"p(L). then
for |z| =1,

¥y I TLA
lg'(=)] < Agh) ()| — kn”-m.

and
.Iu'l On—p | < k.#

n(lan| — ) = 7

where m = ming. ;. [p(z)| and A, is same as defined in Theorem 1.

Lemma 2. If p € F,,,, having all its zeros in |z| < k& where k& < 1, then

Ay < EY

where A, is as defined in Theorem 1.

4. Proofs of Theorem.

Proof of Theorem 1. Let g(z) = z“ﬂ_}, then p(z) = z“@. Therefore for |z| = 1,
lg'(z)| = Inp(2) — 2P (2),  [P/(2)] = Ing(2) — 24'(2)I. (4.1)

Now for every real or complex number 3 with |3] < 1, we have by use of Lemma 1 and (4.1)
for |z] =1,

nBA,z"1 B nA ; .
——F——m| < |¢(2)| + —=Fm < AP (2)] = Aulng(z) — 24'(2)] (4.2)

k™ -

7()+
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r I T
|Dap(z)| = [np(z) + (a — 2)p'(2)| = (la| — AL)[p'(2)] + kﬂ”m (4.3)
Inasmuch as p(z) has all zeros in |z| < k where k < 1, by Guass-Lucas Theorem all zeros of
P'(z) also lie in |z| < k < 1. Therefore 2" 'p/(1) = ng(z) — 2¢/(z) does not vanish in |z| < 1.
Hence,
’ nBApzr 1
(=) (1) + Fgm)
w(z) =
Au(ng(z) — 2¢'(2))
1s analytic in [z| < 1 and by inequality (4.2), |w(z)] < 1 for |z| = 1. Furthermore w(0) = 0.
Thus the function 1 + A,w(z) is subordinate to the function 1 + A,z for |z| = 1. Hence by

well-known property of subordination ([10] ;p-422), we have for s > {]
2w 2
f 1+ Aw(e®)|°do < f 11+ Aue’®|*do. (4.4)
i 0

Now,
ﬂ-(q(::) + %‘fim)

ng(z) — zq'(z)

Therefore for |z| = 1, we have by use of equation (4.1)

1+ Ayw(z) =

34 ,
nlaz) + Z2 % m| = 114 A () ()
Which further implies
I BA,z
nlp(3) + 22| = 11+ Al )
Hence for |z| =1, we get
lp(=) + — 1+ Au(=)|Ip ().

Thus with the help of inequality (4.3), we obtain

L]
9@

n(la] = A,){ f (

which gives the required result with the help of (4.4).

( m}_|_ ﬁ“—mk

)sdﬁ}% < {7|1 n Apu.-(e‘ﬁﬂsdﬁ}%,
: i

| Dap(er?)| — ey,

Proof of Theorem 2. As in Theorem 1 we have

nA,

3?1

2w
(ol - 4)° [ fote) + &
0

(O (Daple®)] — "m) a0

1

Since p>1g > 1and p~! + g~ ! = 1, therefore by Holders Inequality, we obtain

P L o 1
} < { [ |1+A#w(e°*’)|”5d6}P {(Dap(ewﬂ—n;;—??m) dﬂ}“
1]

which proves theorem 2 completely.

ITE

n(lal—4,){ f\ )+
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