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ABSTRACT 

In the mathematical economics, Cournot Duopoly model is very much popular among 

researchers. Duopoly is the sub-case of oligopoly, in which mainly two firms rule the market.  

Inspired by this model, many researches have been made in this field. Some researchers have 

discussed the effect of co-operation among firms involved in R& D activities, some other 

have made researches on non co-operative oligopoly. John P. Laitner appraises conjectural 

duopoly models as an alternative to non-conjectural ones. Some researchers worked on the 

homogeneous duopoly models, where firms use same type of strategies to earn profit. Here, 

we study heterogeneous Duopoly model, where players use heterogeneous strategies against 

each other. There exists three main types of strategies-naive, bounded rational and adaptive. 

In this paper, there is one model with linear cost and linear demand function, then there are 

two nonlinear Duopoly models, in one of which demand function is linear and cost function 

is nonlinear and then demand function is non linear and cost function of both the firms is 

linear. Existence and stability of Boundary and Nash equilibrium points is checked with the 

help of Jacobian matrix and Eigen values. 
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 Assumptions 

Models have been formulated under assumption that goods produced are homogeneous, 

demand function is iso-elastic and both player use different strategies. 

 Linear Duopoly Model 

The underlying assumption that in Duopoly, players are dealing in homogeneous goods 

which are perfect substitutes quantity supplied be ix  , where 2,1i . Inverse Demand 

function is given by bXaY  , where a  andb  are positive constants. 21 xxX  is the 

total supply.  Cost function is iii xcC   

So, Profit Function for the i
th

 firm is 

iii CYx       

  2,1 ixcbXax iii          

                                  

  

   112111.. xcxxbaxei 

 
            222122 xcxxbax   

Each player wants to maximize his profit. So, in order to find profit maximizing quantity, the 

marginal profit is given by: 
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1 2 cbxbxa
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equations are 
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Solving first equation gives  
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                                                                                                (1) 

By using the concept of maxima minima, we find that profit is the maximum for this value of 

1x .
 
This is reaction function for the first firm. Similarly, reaction function for the second

 

firm is given by 

 212
2

1
cbxa

b
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(2) 

 
The general reaction function is  

)(
2

1 2

1

i

ij
j

ji cxba
b

x  



 

The first player is taken to be boundedly rational, second to be naïve player. Denote by )(txi

and )1( txi , the output of the player i at the time t  and 1t respectively. The first player 

being boundedly rational makes his output decisions on the basis of the expected marginal 

profit. The dynamical equation of the first player is

     
 

0,...3,2,1,0,1
1

1
111 




 


 wheret

tx
txtxtx is the speed of adjustment.  (3)

      121111 21.. cbxbxatxtxtxei   using(1)                                                          (4)                                                                                                                        

Also, the dynamical equation of the naive player is   

   212
2

1
1 cbxa

b
tx                                          using (2)                                              (5) 

 Boundary, Nash Equilibrium Points and their Stability 

The equilibrium point of the Duopoly game is obtained by the nonnegative fixed point of the 

system of nonlinear equations (4) and (5).For finding fixed points it is needed to find

2,1,)()1(  itxtx ii  in each of (4) and (5), So, system of equations is given by 
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                                                                         (9)   

Where, 1E  is boundary equilibrium point and 2E is Nash Equilibrium point. To check the 

stability of the equilibrium point, The Jacobian matrix of the system of equations given by (4) 

and (5) at the equilibrium points is calculated first, then nature of Eigen values of this 

Jacobian matrix  at the equilibrium points will determine the stability of equilibrium points. 

Jacobian matrix is given by  
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 At the boundary equilibrium point 1E , the Jacobian matrix is   
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Let    be the Eigen values of  )( 1EJ  . Then Eigen values will be obtained if : 
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 Eigen values of   1EJ are  
2
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1 21

1

cca 
  ,

 
02   . So, 11  is not unique. 

Then 1E is unstable fixed point of discrete dynamical system in (4) and (5)                                                 
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Similarly, at the Nash equilibrium point 2E , the Jacobian matrix is,  
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Let   be Eigen values of  2EJ . Eigen values are obtained by taking: 
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Eigen values of the above Jacobian matrix are roots of characteristic equation

,021
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   122121 2
6
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3
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(11) 

Discriminate of above quadratic equation is given by  
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Clearly, 0D , which means Eigen values of Nash equilibrium are  real. 

Now Nash Equilibrium is locally stable if and only if  
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The first condition is   12
6

12  cca


which means        
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6
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 Then second condition 01 21  AA becomes     02
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2
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which gives 
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                                                                                                                (14) 

Also,  211 AA    1212 2
6

2
3

2
11 ccacca 











 

                              =  12 2
6

3
cca 


 

                              0  

So, third condition is satisfied. 

From (13) and (14), it is clear that Nash equilibrium is stable if 
12 2

12

cca 
  

Duopoly Model with Linear Demand and Non-Linear Cost Function 

Here it is assumed that in Duopoly, players are dealing in homogeneous goods which are 

perfect substitutes quantity supplied be ix  , where .2,1i Inverse Demand function is given 

by bXaY  , where banda are positive constants. 21 xxX  is the total supply.                                  

Non-linear cost function is 2

iii xcC   
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So, Profit Function for the i
th

 firm is 

.2,1,)( 2 



ixcbXax

CYx

iii

iii
 

Each player wants to maximize his profit. So, in order to find profit maximizing quantity, it is 

found that marginal profit 

1121
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                                                                                                                   (16)      

Further investigation shows that for this value of 1x  and 2x   profit is the maximum. The 

general reaction function is 
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(17)                                  

The first player is taken to be boundedly rational, second to be naïve player. Denote by )(txi

and )1( txi , the output of the player i at the time t  and 1t respectively. The first player 

being boundedly rational makes his output decisions on the basis of the expected marginal 

profit. The dynamical equation of the first player is



 
 

1143 | P a g e  
 

     
 

0,...3,2,1,0,1
1

1
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 wheret

tx
txtxtx is the speed of adjustment.  

        211111 21.. bxxcbatxtxtxei  
 
using (14)                                             (18) 

 Second player is naive player, the dynamical equation of the naive player is

 
 

 1

2

2
2

1
1 bxa

cb
tx 


 using (14)                                                                           (19)                                                                                                                         

Boundary, Nash Equilibrium Points and their Stability 

Equations (18) and (19) collectively represent the discrete Dynamic system of duopoly game 

with heterogeneous competitors when cost function is nonlinear. The equilibrium point of the 

duopoly game is obtained by the non-negative fixed point of the system of nonlinear 

equations (18) and (19).Taking .2,1,)()1(  itxtx ii  in each of (18) and (19),  

   02 2111  bxxcbax
                    (20)

 

  02 221  xcbbxa
                    (21)

 

From(18), either 01 x  or   02 211  bxxcba                                        

For 01 x , equation (19) gives 
 2

2
2 cb

a
x


         

For Solving    02 211  bxxcba       and 

                       02 221  xcbbxa           

Multiply first equation by „2  2cb  ‟, second by „b‟ and subtract, which gives  

     042 1
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 Now, multiply first equations by „b‟, second by „2  2cb  ‟ and   subtract, which gives 

     042 22112

2  xcbcbcbaxbab  

    12121

2

2 2443 cbaabccccbbx    

 
  2121

2

1
2

443

2

ccccbb

cba
x




  

  For these two values of 1x  , we get two equilibrium points:                                                     
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(22) 

Where, 1E  is boundary equilibrium point and 2E is Nash Equilibrium point. To check the 

stability of the equilibrium point, the Jacobian matrix of the system of equations given by 

(18) and (19) at the equilibrium points is first calculated, then nature of Eigen values of this 

Jacobian matrix  at the equilibrium points will determine the stability of equilibrium points. 

Jacobian matrix is given by    
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 At the boundary equilibrium point 1E , the Jacobian matrix is                                                                                  
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Let 1  be the Eigen value of )( 1EJ , The Eigen values of the )( 1EJ are given by:  
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 So, 11  and 13,2  . Then 1E is saddle point of discrete dynamical system in (18) and 

(19)                                                         

Similarly, at the Nash equilibrium point 2E  , the Jacobian matrix is 
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Eigen values x of  2EJ  are given by: 
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On solving above determinant, equation obtained is given by: 

  
 

 
 

 
    

0
4432

2

443

2

443

24
1

2121

2

2

2

2

2121

2

1

2121

2

212 









































ccccbbcb

cbab

ccccbb

cbab

ccccbb

cbcba
axx




 

Eigen values of the above Jacobian matrix are roots of characteristic equation 
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    2121

2

2

2

2

2

2121

2

121
1

4432

2
,

443

224
1

ccccbbcb

cbab
A

ccccbb

cbabcbcba
aA





































Eigen values of Nash equilibrium are real if equation (25)  has real roots, which is possible if 

Discriminate =
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, which is true.  

Hence, Real Eigen values of Nash equilibrium points will be obtained. 

Now Nash Equilibrium is asymptotically stable if all Eigen values given in eq. (25) has magnitude 

less than one. Which is possible if f 
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Second condition becomes  
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 Duopoly Model with Non-Linear Demand and Linear Cost Function  

Under above mentioned assumptions let quantity supplied be ix  , where .2,1i 21 xxX 

is the total supply of goods in the market. Iso- elasic inverse demand function is given by  

X
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 . Here, cost function .2,1 ixcC iii  is linear. So, Profit Function for the 1
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and 2
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As mentioned above , in order to find profit maximizing level of output, the marginal profit 
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As assumed in above model, first player is boundedly rational, second is naïve player, So , 

output of first player at time (t+1) is given by  
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 wheret
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txtxtx is the speed of adjustment.       
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Dynamical equation of naïve player is given by            
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tx 1

2

1
2 1                 (27)     

 Equations (26) and (27) represents the two dimensional discrete dynamical system of the 

firms.

 

 Boundary and Nash Equilibrium Points and their Stability 

To find equilibrium point, the nonnegative fixed point of the system of nonlinear equations is 

calculated as given by (26) and (27).Taking 2,1,)()1(  itxtx ii  in (26) and (27), 

equations become     
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Substituting value of 01 x in equation (29) , 02 x  .                                                           (31)    

For 01 x , equation (29) and (30) gives  
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Substituting value from (33) in (32), equation obtained is
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3E  is Nash Equilibrium point. 

Again to check the stability of the equilibrium point, the Jacobian matrix of the system of 

equations given by (26) and (27) is calculated at the equilibrium points, Jacobian matrix is 

given by                                                                                                                                                   
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At the Nash equilibrium point 4E , the Jacobian matrix is  
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Let Eigen values of the above Jacobin matrix be  , which are given by 
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Eigen values of the above Jacobian matrix are roots of characteristic equation
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 which is true. 

 Nash equilibrium is asymptotically stable if all eigen values has magnitude less than one. Necessary 

and sufficient condition for local stability of Nash equilibrium point is given by 
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Now Nash equilibrium is locally stable if and only if 
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From second condition,
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which is true. 

From third condition,  

 

 

 Conclusion 

 The present study discusses stability condition of the two types of equilibrium points- 

Boundedly rational and Nash equilibrium points of linear and non-linear duopoly models. 

Models are formulated under the assumption that two players use heterogeneous strategies. 

One player is considered boundedly rational, second is naive. Dynamical equations of two 

heterogeneous players are formulated. For checking the stability conditions, Jacobian 

matrices are used. The eigen values of these Jacobian matrices determine the stability of 

equilibrium points. It is seen that Boundary equilibrium point is saddle point and Nash 

equilibrium is locally stable under certain conditions. These conditions are derived in all the 

three cases.  
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