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ABSTRACT

In the mathematical economics, Cournot Duopoly model is very much popular among
researchers. Duopoly is the sub-case of oligopoly, in which mainly two firms rule the market.
Inspired by this model, many researches have been made in this field. Some researchers have
discussed the effect of co-operation among firms involved in R& D activities, some other
have made researches on non co-operative oligopoly. John P. Laitner appraises conjectural
duopoly models as an alternative to non-conjectural ones. Some researchers worked on the
homogeneous duopoly models, where firms use same type of strategies to earn profit. Here,
we study heterogeneous Duopoly model, where players use heterogeneous strategies against
each other. There exists three main types of strategies-naive, bounded rational and adaptive.
In this paper, there is one model with linear cost and linear demand function, then there are
two nonlinear Duopoly models, in one of which demand function is linear and cost function
is nonlinear and then demand function is non linear and cost function of both the firms is
linear. Existence and stability of Boundary and Nash equilibrium points is checked with the

help of Jacobian matrix and Eigen values.
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Assumptions

Models have been formulated under assumption that goods produced are homogeneous,

demand function is iso-elastic and both player use different strategies.
Linear Duopoly Model

The underlying assumption that in Duopoly, players are dealing in homogeneous goods

which are perfect substitutes quantity supplied bex, , where i=212. Inverse Demand
function is given by Y =a—bX , wherea andb are positive constants. X =X, + X, is the

total supply. Cost function is C, =c;X;
So, Profit Function for the i firm is
m; =YX, —C,
=x(a—bX)-cx =12
ie 7, =x[a-b(x +x,)]-cx
7, =X, [a—h(x, +x,)]-c,x,

Each player wants to maximize his profit. So, in order to find profit maximizing quantity, the

marginal profit is given by:

%=a—2bx1—bx2 —-C,
0%,

aﬂ:a—bxl—bez —-C,
oX,

For %=o,a”2

=0, equations are
0%, OX,

a—c, —bx,—2bx, =0
a—c,—bx, —2bx, =0

Solving first equation gives
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a—c, —bx,
X =—= l
. - 1)

By using the concept of maxima minima, we find that profit is the maximum for this value of

X1, This is reaction function for the first firm. Similarly, reaction function for the second

firm is given by

1
X2:2—b(a—bX1—C2) (2)

The general reaction function is

1 2
X, =— a—bE X: —C,
1 2b( = ] |)
J#i

The first player is taken to be boundedly rational, second to be naive player. Denote by X, (t)

and x; (t+1), the output of the player iat the time t and t+Z1respectively. The first player

being boundedly rational makes his output decisions on the basis of the expected marginal

profit. The dynamical equation of the first player is

x (t+1)= xl(t)+ax1(t)aa—ﬂ(1t) t=0123... ,where a >0is the speed of adjustment. (3)
Xl

i.e.x, (t+1) =x, (t)+ e x, (tNa—2bx, —bx, —c, )using(1) (4)

Also, the dynamical equation of the naive player is
X,(t+1)= 2—1b(a—bx1 -c,) using (2) (5)

Boundary, Nash Equilibrium Points and their Stability

The equilibrium point of the Duopoly game is obtained by the nonnegative fixed point of the

system of nonlinear equations (4) and (5).For finding fixed points it is needed to find

X, (t+1) =x;(t) ,i =12 in each of (4) and (5), So, system of equations is given by
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x,(a—2bx, —bx, —¢,)=0 (6)
a—2bx, —bx, —c, =0 (7)
a—bx, —c,

Equation (6) gives either x, =0 or x, = 2

_C2

a
If x. =0, then (7) gives x, =
1 (Mg 2 2b

a—bx,-c

Also, for x, = L equation (7) gives

be(b_}o

2b
-2
o x, = 8+6 2%
3b
a—b a+c, —2c, _¢,
. 3b
i.e.X,=
2b
i_e_xlzw
3b
a—c
So, E, =0, 2 8
1 ( 2 J (8)
and Ezz[a+cz—201’a+cl—2c2j )
3b 3b

Where, E, is boundary equilibrium point and E,is Nash Equilibrium point. To check the
stability of the equilibrium point, The Jacobian matrix of the system of equations given by (4)
and (5) at the equilibrium points is calculated first, then nature of Eigen values of this
Jacobian matrix at the equilibrium points will determine the stability of equilibrium points.

Jacobian matrix is given by
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1 0

1+ afa—4bx, —bx, —c,) —abx,
e J=
2

At the boundary equilibrium point E,, the Jacobian matrix is

E)- 1+o{a—b(a;bczj—clj 0

1 0
2
1. (a—2c1+c2j 0
_ 2
e 0
2

Let S be the Eigen values of J(E,) . Then Eigen values will be obtained if :

1+a(—a_2C21+C2j—ﬂ 0

1 =0
_E _ﬂ
. a—-2c, +c¢,
Leif —gl+a — -p:=0
a-2c, +c,

Eigen values of J(El)are B =1+ a# ,

B, =0 .50, |3]>1lis not unique.

Then E; is unstable fixed point of discrete dynamical system in (4) and (5)
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Similarly, at the Nash equilibrium point E, , the Jacobian matrix is,

1+a[a_4b(a+cz—chj_b£a+cl—202)_clJ _ab(a+cz—201j
- 3 % %

1 0
2

(10)

Let » be Eigen values of J(E, ). Eigen values are obtained by taking:

1+o{a—%(a+c2 —201)—%(a+c1 —202)—01J—y —%(a+c2 —2¢,

5 -7

:{1—2?“(a+c2 _201)_7}(—7)—%(a+c2 ~2¢,)=0
— p? _;/Ll—z?a(aJrCz —2c1)—%(a+c2 —ch)j:O

Eigen values of the above Jacobian matrix are roots of characteristic equation

7y +Ay+A =0,

A =—(1—2?a(a+ c, — 201)) A, =—%(a+c2 -2c,)
(11)

Discriminate of above quadratic equation is given by
D=A>-4A,

2
= (1+2?0[(a+c2 —2c1)} +4%(a+c2 -2¢,)

Clearly, D >0, which means Eigen values of Nash equilibrium are real.

Now Nash Equilibrium is locally stable if and only if
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()]A[<1,

(i)1-A +A,>0 (12)

(il)1+ A +A,>0

The first condition is ‘Z(a +C, — ZCJ <1 whichmeans  a< 5 (13)
6 a—2c, +c,

Then second condition 1— A, + A, >0 becomes1 + (1— 2?“(61 +c, — 2cl)j—%(a +c, —2¢,)>0

Safa+c, —2c,)

2— >0
which gives 6
o 5afa+c, —2c,) -5
6
iea<— 2 (14)
a+c,—2c

Also, 1+ A + A, =1—( —2?0((a+c2 —2cl)j—%(a+c2 -2¢,)

=3?0[(a+c2 -2c,)

>0
So, third condition is satisfied.

12

From (13) and (14), it is clear that Nash equilibrium is stable if & < ———
a+c,—2c,

Duopoly Model with Linear Demand and Non-Linear Cost Function

Here it is assumed that in Duopoly, players are dealing in homogeneous goods which are

perfect substitutes quantity supplied be x; , where i =1,2.Inverse Demand function is given

by Y =a-bX, wherea andbare positive constants. X =X, +X,is the total supply.

Non-linear cost function is C; =c¢;x}
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So, Profit Function for the i firm is

m; =YX, —C,
=x (a-bX)-¢,x’ ,i=12.

Each player wants to maximize his profit. So, in order to find profit maximizing quantity, it is
found that marginal profit

om, =a - 2bx, —bx, — 2c,x,

0X, (15)

For om _ 0
0%,

a—Dbx,
2(b+c,)

X =

0
Also, 2 _a- bx, —2bx, —2¢c,X, gives
oX,

y =( a—bx, J
> (2(b+c,) (16)

Further investigation shows that for this value of x;, and x, profit is the maximum. The

general reaction function is

X (b+c (a be)

j#l
17)
The first player is taken to be boundedly rational, second to be naive player. Denote by X, (t)

and x, (t +1), the output of the player iat the time t and t +1respectively. The first player

being boundedly rational makes his output decisions on the basis of the expected marginal

profit. The dynamical equation of the first player is
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X (t+1)=x,(t)+a xl(t)aa—ﬂ(f[) ,t=0123... ,where a > Ois the speed of adjustment.

Xl
iex (t+1)=x(t)+ax(t a-2(b+c,)x —bx,) using (14) (18)

Second player is naive player, the dynamical equation of the naive player is

X, (t+1) = (a—bx, )using (14) (19)

2(b+c,)

Boundary, Nash Equilibrium Points and their Stability

Equations (18) and (19) collectively represent the discrete Dynamic system of duopoly game
with heterogeneous competitors when cost function is nonlinear. The equilibrium point of the
duopoly game is obtained by the non-negative fixed point of the system of nonlinear

equations (18) and (19).Taking x; (t +1) = x, (t) ,i =12. in each of (18) and (19),
x (@a—2(b+c,)x, —bx,)=0 (20)
a—bx, —2(b+c,)x, =0 1)

From(18), either x, =0 or a—2(b+c, )x, —bx, =0

For x, =0, equation (19) gives x, =

_a&
2(b+c,)
For Solving a—2(b+c,)x, ~bx, =0  and
a—bx, —2(b+c,)x, =0
Multiply first equation by 2 (b +¢, )’, second by ‘b’ and subtract, which gives
2a(b+c,)-4(b+c, Yb+c,)x, —ab+b?*x, =0
— (ab+2ac,)+|-30% —4b(c, +¢,)—4c,c, Jx, =0

a(b+2c,)
3b? +4b(c, +c¢, )+4c,c,

=X =
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Now, multiply first equations by ‘b’, second by ‘2 (b +c, ) >and subtract, which gives
ab—b’x, —2a(b+c,)+4b+c bo+c,)x, =0
X,[3b% + 4b(c, +¢,)+4c,c, |=—ab+2a(b +c,)

a(b+2c,)
3b? +4b(c, +¢,)+4c.c,

=X, =

For these two values of x, , we get two equilibrium points:

E, = 01L and E _ a(b+2c,) a(b + 2c,)
2(b + C1) ?(3b% +4b(c, +c,)+4c,c, 302 +4b(c, +c,)+4cc,

(22)

Where, E, is boundary equilibrium point and E,is Nash Equilibrium point. To check the
stability of the equilibrium point, the Jacobian matrix of the system of equations given by
(18) and (19) at the equilibrium points is first calculated, then nature of Eigen values of this
Jacobian matrix at the equilibrium points will determine the stability of equilibrium points.

1+a(a—4b+c, )x —bx,) —abx,
b

Jacobian matrix is givenby J = B 0 (23)
2(b+c,)
At the boundary equilibrium point E,, the Jacobian matrix is
o) o
I(E)= f)( +6) (24)
- 0
2(b+c,)

Let A, be the Eigen value of J(E,;) The Eigen values of the J(E,) are given by:

b+2c
1 1 0
+aa2(b+C1) 4 0o
b7
2(b+c,)
. b+2c
ell L =0
|e( +aa2(b+C1) 21}21
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ca(b +2c,)
=1+———andA,, =0.
T )

So, |21| >1and ‘/12’3‘ <1. Then E,is saddle point of discrete dynamical system in (18) and

(19)
Similarly, at the Nash equilibrium point E, , the Jacobian matrix is
l+a(a— 24a(b+c1)(b+202) _ ab(b +2c,) ] ab— b+2c,
I(E,)- 30% +4b(c, +¢,)+4c,c, 3b%+4b(c, +c,)+4cc, 3b% +4b(c, +¢, )+4c,C,
— b 0
2(b+c,)

Eigen values x of J (EZ) are given by:
ol o 24a(b+c1)(b+2c2) _2 ab(b +2c,) X —asb— b+2c, |

30% +4b(c, +¢,)+4cc, 3b?+4b(c, +c,)+4ccC, 30 +4b(c, +¢,)+4c,C,| _

b
- - X
2(b+c,)
On solving above determinant, equation obtained is given by:
) 4a(b+c, fb+2c,) ab(b+2c,) ab®a(b +2c,)
X =x1l+ala- - — =0
302 +4b(c, +¢,)+4c,c, 3b2+4b(c, +¢,)+4cc, )| 2b+c,)30? +4b(c, +c,)+4cc, )

Eigen values of the above Jacobian matrix are roots of characteristic equation

X? + AX+ A, =0, (25)

where

A=1idas ~4a(b+c, b+ 2c,)—ab(b+2c,) A ab’a(b +2c, )
3b? +4b(c, +c,)+4cc, ’ 2(b+c, )3b% +4b(c, +c, )+4c,c,)

Eigen values of Nash equilibrium are real if equation (25) has real roots, which is possible if

Discriminate = A? —4A, >0
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2 2
i.e.{1+a(a+_4a(b+cl)(b+2C2)_ab(b+2cl)]} s ab?a(b+2c,) o
3b? +4b(c, +¢,)+4cc, 2(b+c, (302 +4b(c, +c, )+4c,c, )
, which is true.
Hence, Real Eigen values of Nash equilibrium points will be obtained.
Now Nash Equilibrium is asymptotically stable if all Eigen values given in eq. (25) has magnitude

less than one. Which is possible if f

()1-A+A, >0
(iN1+A +A >0
(iif) |A,| <1
Second condition becomes
o1 Ab+c)b+2c,) b(b+2c,) ~ cab?(b+2c,)
302 +4b(c, +¢,)+4cc, 3b%+4b(c, +c,)+4cc, ) 2(b+c,) 302 +4b(c, +¢,)+4c.c,)
: 4aa(b+c, )b +2c,) cab(b + 2c,) cab?(b +2c,)
ie.—oa+ + -
302 +4b(c, +¢,)+4c,c, 302 +4b(c, +¢,)+4cc, 2(b+c,)3b% +4b(c, +c,)+4c.c,)
2
.~ aat— aalb +2c,) HMoro)-—2 |y : aab(b +2c,)
3b? +4b(c, +c, )+ 4c,c, 2(b+c,)| 3b>+4b(c, +c,)+4cc,
. ca(b+2c,) 7b® +80(c, +c¢,)+8c,c, cab(b + 2c, )
ie.—oa+ +
3b? +4b(c, +¢,)+4cc, 2(b+c,) 3b? +4b(c, +¢,)+4cc,
" oa —2(0+c, )ab? +4b(c, +c,)+4c,c, )+ (b+2c, {7b? +8b(c, +c,)+8c,c, )
T 2(b+c, J30% +4b(c, +¢,)+4c,c, )| + 2b(b+ 2¢, Yb +c,)

oa

[30% +10b%c, +8b(c, +¢, ), +8c,c2 +4b>c, +4bc,c, |

e 2(b+c, \3b% +4b(c, +c,)+4c.c,)
So
o
1+A +A = 2o+ 0,37 + 4b(e, 0,)+ 40102)[3b3 +10b%c, +8b(c, +¢, )c, +8¢,c2 +4b’c, +4bc,c, |>0

Also, from third condition |A, | <1

if |A,|-1<0
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3 2
it oa i) +2b“c, 1<0
2(b+c, J[302 +4b(c, +c, )+4c,c, )

. b* + 2bc,
I.f od <1
2(b+c, )30% +4b(c, +c,)+4c,c, )

2(b+c, J3b? +4b(c, + ¢, )+ 4c,C, )

if
“s alb® +2b’c,)
From first condition, 1- A + A, >0
2
o 1iliola dalb+c fb+2c,) ab(b+2c,) B ab®a(b+2c,) 0
302 +4b(c, +¢,)+4c,c, 307 +4b(c, +c,)+4c,c, | 2(b+c, 3o +4b(c, +c, )+4c,c, )
2
o 9 adl 1 4b+c)b+2c,) bb+2c,) B ab?a(b+2c,) 0
302 +4b(c, +¢,)+4cc, 302 +4b(c, +c,)+4cc, | 2b+c,)30% +4b(c, +¢,)+4c.c, )
: 4b+c, b+ 2c,) b(b+2c,) aba(b +2c,)
e aa|l-—; -— - > > -2
302 +4b(c, +¢,)+4c,c, 302 +4bc, +¢,)+4cc, | 2(b+c, )37 +4b(c, +c,)+4cc, )
: 4b+c, Yb+2c,) b(b +2c,) ab’a(b+2c,)
le aall- - - > -2
302 +4b(c, +¢,)+4c,C, 302+4b(c, +¢,)+4cc, ) 2(b+c, )30 +4b(c, +c,)+4cc, )

ie.2(b+¢,)aa(30? +4blc, +¢, )+ 4c,c, —4b? ~8bc, —dbe, ~8c,c, b’ —2be, )-ab’alb+2c, ) > ~4b+c, 30> + Ablc, +¢, )+ 4cic,)

ie. 2(b+c, )aa(—2b% - 2bc, —4be, —4c,c, - ab®a(b+ 2c, ) > ~4(b+c, )30? +4bl(c, +¢,)+4c,c,
ie. 2(b+c, Jaa[-2b(b+c, )—4c, (b+¢, )]~ ab? (b +2c,) > —4(b + ¢, Y3b% +4b(c, +¢, )+ 4c,c, )

ie. —4(b+c,)aaf(b+c, Yb+2c, )] - ab?a(b + 2c, ) > —4(b+c, J3b? +4b(c, +¢, )+ 4c,C, )
ie.ca(b+2c, Jab+c, Yb+c,)+b?|< 4(b+c,)30% +4b(c, +¢,)+4cc, )

ca(b+2c, J4b? + 4bc, +4bc, +4c,c, +b? |< 4(b+c, 3b? +4b(c, +¢,)+4c,c, )
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Duopoly Model with Non-Linear Demand and Linear Cost Function

Under above mentioned assumptions let quantity supplied be X, , where i =12. X =X, +X,

is the total supply of goods in the market. Iso- elasic inverse demand function is given by

Y =%. Here, cost function C, =¢,x, i=12. is linear. So, Profit Function for the 1% and 2"

firms are:

T, =YX, —C,
RCETRRCY

7, =YX, —C,

As mentioned above , in order to find profit maximizing level of output, the marginal profit

and value of output is found for which

i _gi-12.
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o7y _
OX,
X, + X, — X,
c, =0

BERCETS §

Xl

c, =0

:>(X1+X2)2 :
— (X1+X2)2 _ 1

X1 CZ
= Xy = /—Xl - X

CZ

As assumed in above model, first player is boundedly rational, second is naive player, So ,

output of first player at time (t+1) IS given by
X (t+1)=x(t)+ e Xl(t);x—ﬁ(lt) ,t=0123... ,where a > 0is the speed of adjustment.
1
x,(t+1)=x,(t)+ axl(t){% - cl} (26)
(%, +x,)
: , . - x,(t)
Dynamical equation of naive player is given by X, (t+1)= —x,(t) (27)

C,

Equations (26) and (27) represents the two dimensional discrete dynamical system of the

firms.
Boundary and Nash Equilibrium Points and their Stability

To find equilibrium point, the nonnegative fixed point of the system of nonlinear equations is
calculated as given by (26) and (27).TakingX;(t+1) =x;(t) ,i=12 in (26) and (27),

equations become

ok
S )

(29)
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Either x, =0 or —2—=q (Using equation (28))
(Xl + X2 )

Either x, =0 or

ve (30)

Substituting value of X, = 0in equation (29), X, =0 . (31)

For x, # 0, equation (29) and (30) gives

ie. =
c, c, 33)
ie.x,(t)="2x,(t)
CZ
Substituting value from (33) in (32), equation obtained is Xét =x1(t)+(c:—1xl(t)
2 2
) x, (t =X1(t{C1+C2J
C2 CZ
. . x(t)  ,nyC+C, ?
On squaring both sides, =2 = x?(t) 2—2 | ,
CZ C2
c
x,(t)= 2
()
From eq. (33) X,(t)= LZ
(c, +c,)
c c
E,—| G G 34
o) 0
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E, is Nash Equilibrium point.

Again to check the stability of the equilibrium point, the Jacobian matrix of the system of

equations given by (26) and (27) is calculated at the equilibrium points, Jacobian matrix is

given by
_ - - -
L 225 ) of o]
J= (Xl + Xz) (Xl + Xz) (35)
. 0
i 2./%.C, |
1 acl(CZ _Cl)
At the Nash equilibrium point E, , the Jacobian matrix is J(E, )= c_c Gt
1~ >
— 0
2¢,

Let Eigen values of the above Jacobin matrix be A, which are given by

1- 4 acl(CZ _Cl)
C, +¢C, -0
C, -G )
2¢,

Eigen values of the above Jacobian matrix are roots of characteristic equation

2
A +AA =0, h -1 :acl(cl_cz)

Eigen values of Nash equilibrium are real if discriminate > 0

ie if A +4A,>0

2
ieif1ra®aC=C)

> 0 which is true.
2¢,(c, +¢,)

Nash equilibrium is asymptotically stable if all eigen values has magnitude less than one. Necessary

and sufficient condition for local stability of Nash equilibrium point is given by
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1. 1-A+A >0
2. 1+A+A, >0
3. |A)<1

Now Nash equilibrium is locally stable if and only if

From first condition,

1-A +A,>0
acl(cl_cz)z

0
2¢,(c, +¢,) g

iel+1+

2
PG ) PP A )

202 (Cl +C, ) G, (Cl —C, )2

From second condition, 1+ A + A, >0

2
ac,(c, —c L
M>O which is true.

e 2c,(c, +c,) ,

From third condition,

acl(cl -G )2 <1
2¢,(c, +c¢,)

Conclusion

The present study discusses stability condition of the two types of equilibrium points-
Boundedly rational and Nash equilibrium points of linear and non-linear duopoly models.
Models are formulated under the assumption that two players use heterogeneous strategies.
One player is considered boundedly rational, second is naive. Dynamical equations of two
heterogeneous players are formulated. For checking the stability conditions, Jacobian
matrices are used. The eigen values of these Jacobian matrices determine the stability of
equilibrium points. It is seen that Boundary equilibrium point is saddle point and Nash
equilibrium is locally stable under certain conditions. These conditions are derived in all the

three cases.
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