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ABSTRACT  

In this paper, we introduce a new measure of ‘useful’ fuzzy divergence having order   and type . We check 

the validity of the proposed measure and also discuss the important properties of this measure. The results are 

verified by using R Software. 
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1. Introduction 

Divergence measures are basically introduced to measure or compare the distance between any two probability 

distributions. A variety of divergence measures have been introduced which are applicable in a number of fields 

such as analysis of contingency table, pattern recognition, economics and political science, biology, signal 

processing, etc. In fuzzy mathematics, the divergence measures are used as fuzzy directed divergence and are 

also used to obtain the utility of an event that is, how much useful an event is in comparison to other event. 

     Various fuzzy divergence measures have been introduced by several authors to measure the discrepancy 

between two fuzzy sets. The first measure of directed divergence was given by Kullback and Leibler [1]. 

Corresponding to this, Bhandari and Pal [2] gave the measure of fuzzy directed divergence as: 
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Bhandari and Pal [2] also gave the measure of fuzzy symmetric divergence as: 

 
),(),(),( ABIBAIBAJ   

Hooda and Bajaj [3] defined the following ‘useful’ fuzzy directed divergence by considering together the 

concept of fuzziness and probability with utility:
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Ka

pur [4], Fan, Ma and Xie [5], Parkash and Sharma [6], Anshu Ohlan [7] etc. have proposed different measures 

of fuzzy directed divergence. 

This paper is divided into four sections. Section 1 corresponds to the introduction where the basic concepts are 

presented. In section 2, a new measure of ‘useful’ fuzzy divergence measure is defined and its properties are 

given in the section 3. Lastly, in section 4 conclusion of the paper is presented.  

2. New ‘Useful’ Fuzzy Divergence Measure 

We define a two parametric ‘useful’ fuzzy divergence measure of order   and type   corresponding to the 

‘useful’ fuzzy information measure given by Saima Manzoor Sofi et al. [8]: 
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0&10,1,0  iu   (1) 

and ‘useful’ fuzzy symmetric divergence measure as: 

);,();,();,( UABIUBAIUBAJ   

The above defined measure is a valid measure of ‘useful’ fuzzy divergence if it satisfies the following 

properties: 

(i) .0);,( UBAI  

(ii) 0);,( UBAI  if )()( iBiA xx    

(iii) );,();,( UABIUBAI   

(iv) );,( UBAI  should remain same even if )( iA x  is replaced by )(1 iA x and )( iB x  by 

)(1 iB x  
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(v) );,( UBAI is convex i.e., 0
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0&10,1,0  iu  

 

 

 

Example: We verify the above properties in the tables given below by considering two fuzzy sets A & B: 

Table 1 

)( iA x  )( iB x  iu      );,( UBAI  

0.65 0.42 1 

0.53 0.79 0.2271539 

0.23 0.28 2 

0.82 0.05 3 

0.44 0.90 4 

0.97 0.73 5 

 

Table 2 

)( iA x  )( iB x  iu      );,( UBAI  

0.65 0.65 1 

0.53 0.79 0.0 

0.23 0.23 2 

0.82 0.82 3 

0.44 0.44 4 

0.97 0.97 5 

 

From Table (1) & (2), it is clear that );,( UBAI is non-negative (i.e., 0);,( UBAI ) & 0);,( UBAI  for 

)()( iBiA xx   , respectively. 
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Table 3 

)( iA x  )( iB x  iu      );,( UBAI  );,( UABI
 

0.65 0.42 1 

0.53 0.79 0.2271539 0.2373578 

0.23 0.28 2 

0.82 0.05 3 

0.44 0.90 4 

0.97 0.73 5 

 

From Table (3), it is obvious that );,();,( UABIUBAI   

Table 4 

)( iA x  )(1 iA x  )( iB x  )(1 iB x  iu      );,( UBAI
 

0.65 0.35 0.42 0.58 1 

0.53 0.79 0.2271539 

0.23 0.77 0.28 0.72 2 

0.82 0.18 0.05 0.95 3 

0.44 0.56 0.90 0.10 4 

0.97 0.03 0.73 0.27 5 

 

It is clear from Table (4), that we get the same value for );,( UBAI if we exchange )( iA x  by 

)(1 iA x and )( iB x  by )(1 iB x . 

Table 5 

)( iA x  )( iB x  iu      
)(

);,(
2

2

iA x

UBAI




 

)(

);,(
2

2

iB x

UBAI




 

0.65 0.42 1 

0.53 0.79 

0.2391 0.1322 

0.23 0.28 2 0.3454 0. 2348 

0.82 0.05 3 0.9840 5.2471 

0.44 0.90 4 0.3291 0.5371 

0.97 0.73 5 6.8999 0. 3499 
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Table (5) implies the convexity of the proposed measure that is, 0
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Hence, we conclude from the results of above tables that the measure defined in (1) satisfies property (1) to (5). 

Thus, the measure is a valid ‘useful’ fuzzy divergence measure of order   and type  . 

In particular, we have 

1. For .0);,(,1&0  UBAI  

2. For .0);,(,0  UBAI  

3. For niui ...,,2,11  , );,( UBAI tends to the fuzzy divergence measure given by Safeena 

Peerzada et al. [9]. 

3. Some More Properties of ‘Useful’ Fuzzy Divergence Measure 

In addition to the above properties, the measure (1) satisfies the following properties: 

(a) );,();,();,( UABIUABAIUABAI   

Proof:  Suppose 21 & XX  are two fuzzy sets defined as  )()(,1 iBiAi xxXxxX    & 

 )()(,2 iAiBi xxXxxX   . 

In set ,1X  we have 

   )()(,)(max)( iAiBiABA xxxx    &   )()(,)(min)( iBiBiABA xxxx    

In set ,2X  we have 

   )()(,)(max)( iBiBiABA xxxx    &   )()(,)(min)( iAiBiABA xxxx    

We have from (1) 
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This establishes (a). 

(b) );,;();,;( UBAUBAIUBAUBAI 
 

Proof: Consider  );,;( UBAUBAI  
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            (2) 

From R.H.S., we have 

 );,;( UBAUBAI  
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            (3) 

Taking (2) and (3) together, we get (b). 

(c) );,();,();,();,( UCBIUCAIUCBAIUCBAI   

Proof: L.H.S. = 
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(d) );,();,( UAAIUAAI   
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Proof: L.H.S.:  

 

































n

i

i

n

i

iAiAiAiAi

D

u

xxxxu

UAAI

1

1

)1(1)1()1(1)1( ))(1())(1()()(

log
1

);,(

 





 

 

































n

i

i

n

i

iAiAiAiAi

D

u

xxxxu

1

1

)1(1)1()1(1)1( )())(1())(1()(

log
1

 




 

(4) 

R.H.S.: 
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           (5) 

Comparing (4) and (5), we get L.H.S. = R.H.S. 

(e) );,();,( UBAIUBAI   

Proof: We have 
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(f) );,();,( UBAIUBAI   

Proof: We have 
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        (7) 

Comparing (6) and (7), we get );,();,( UBAIUBAI  . 

(g) );,();,();,();,( UBAIUBAIUBAIUBAI  . 
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Proof: It is obvious from (e) and (f) that (g) holds. 

4. CONCLUSION 

The measure of ‘useful’ fuzzy directed divergence is studied in the present paper. The important properties of 

this measure are also given. Further, R-Software is used to give numerical illustration. 
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