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ABSTRACT 

The MSP430 based software implementation of cryptographic schemes for wireless sensor networks poses a 

challenge due to the limited capabilities of the platform. In this work we describe a software implementation of 

pairing based cryptography and elliptic curve cryptography for the MSP430 microcontroller, which is used in 

some wireless sensors including the Tmote Sky and TelosB. We have the pairing computation for the MNT and 

BN curves over prime _elds along with the ECDSA scheme. The main result of this work is a platform-specific 

optimization for the multiplication and reduction routines that leads to a 28% speedup in the _eld multiplication 

compared to the best known timings. This optimization consequently improves the speed of both pairing 

computation and point multiplication. 

Keywords: pairing based cryptography, wireless sensor networks, softwareimplementation. 

 

I. INTRODUCTION 

Wireless sensor networks (WSN) have been the subject of a lot of research recently due to their vast number of 

applications. One of the challenges they bring is how to secure their communication against eaves dropping. 

These can be addressed through many cryptographic schemes; but since these nodes are highly constrained 

environments, these schemes must be implemented with great efficiency. The advantages of asymmetric over 

symmetric cryptography for WSNs is well established in the literature. For that reason, we chose to implement 

two types of asymmetric cryptosystems: pairing-based and elliptic curve cryptography. The security levels being 

considered are the 64/70-bit, being the most feasible and where most of the work so far has focused; and the 

128-bit, which can be expensive but may be necessary in the coming years and has not been well explored for 

WSNs. The main contributions of this work are a platform-specific optimization to improve the speed of both 

types of cryptosystems and timings for computations in those two different security levels.  

The remainder of this work is organized as follows. In Section 2 we give an introduction to the MSP430 

microcontroller, describing its features and limitations. Subsequently, in Section 3, the fundamental operations 

of multiplication and reduction are described along with our proposed optimization. The implementation and 

results of pairing-based cryptography is described in Section 4. In Section 5, the implementation and results of 

elliptic curve cryptography is detailed. Finally, this paper in concluded in Section 6. 
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II.THE MSP430 MICROCONTROLLER 

The MSP430 from Texas Instruments is a family of 16-bit microcontrollers mostly known for its low power 

consumption and it is used in wireless sensors such as the Tmote Sky from Moteiv and the TelosB from 

Crossbow. It features 12 general purpose registers and a 27 instructions set including one bit only shifts and byte 

swapping. Memory (bytes and words) can be addressed through four addressing modes: register direct, register 

indexed (with an o_set word), register indirect and register indirect with post-increment. Destination operands 

can be addressed only with register direct and indexed modes. 

Each instruction can be represented by up to three words (one for the instruc- tion and two o_set words). With 

only a few exceptions, it is relatively simple to calculate the number of cycles spent in each instruction: one for 

each word in the instruction, plus one for each memory read and two for each memory write. Short immediate 

constants (�1, 0, 1, 2, 4 and 8) can be encoded without using o_set words with a clever usage of two special 

registers (for example, zeroing a register the \naive way" { moving 0 to it { takes only one cycle). 

Still, there is a critical issue with the instruction set: it lacks both multiply and divide. This is partially addressed 

with a hardware multiplier present in some of the MSP430 models. It is a memory mapped peripheral that 

supports four operations: multiply, signed multiply, multiply and accumulate and signed multiply and 

accumulate. In order to use them, it is necessary to write the _rst operand into one of four speci_c addresses 

(MPY, MPYS, MAC, MACS; respec- tively) according to the operation to be issued. Then, the second operand 

can be written into another speci_c address (OP2) and the double precision result will be available with a two 

cycle delay in two addresses (RESLO, RESHI). The multiply and accumulate operations also set the carry ag of 

the addition into another address (SUMEXT). 

An important consequence of the hardware multiplier is that it implies an unusual overhead since the operands 

must be written to and read from memory. Also, there is no instruction for division, therefore it must be carried 

out in software which is rather expensive. When timing the algorithms, we have measured the number of cycles 

taken 

by the procedures. Timings in seconds or milliseconds are calculated assuming a 8,000,000 Hz clock; the exact 

maximum clock varies in each device from the MSP430 family. For that reason, it is recommended to compare 

running times by their number of cycles. We have used the MSPGCC compiler version 3.2.3 with the -O2 

optimization ag unless noted otherwise.  

 

III.MULTIPLICATION AND REDUCTION 

Field multiplication over IFp sums about 75% of the running time of point mul-tiplication and pairing 

computation. Consequently, it is crucial to implement it using assembly language since this leads to a speedup 

greater than two-fold, according to our experiments. Multiplication in IFp consists of two operations: the plain 

multiplication of the operands into a double precision number and its subsequent reduction modulo a prime.  

3.1 Multiplication 
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The standard algorithm for multiplication is the Comba method [1], which is a column-wise variant of the row-

wise standard schoolbook version that reduces memory accesses. Recently, it has been suggested a variant of the 

Comba method, the Hybrid method [2], that mixes the row-wise and column-wise techniques. It can be seen as 

the plain Comba method, with the di_erence that each \digit" is now stored in multiple machine integers, and the 

digit-digit multiplication is carried out with the row-wise schoolbook technique. Both methods are illustrated in 

Figure 1. 

The advantage of the Hybrid method is that, in a digit-digit multiplication, all of the integers of the _rst digit can 

be stored in registers, reducing memory reads. Consequently, this method is appropriate for platforms with a 

relatively large number of registers. In [3], the authors present an even more optimized version of the Hybrid 

method, using carry-catcher registers in order to simplify its carry handling. They have also studied its 

application on many platforms, in- cluding the MSP430, where they were able to obtain a 15:4% speed 

improvement compared to the Comba method. 

It appears that the Hybrid method is always superior to the plain Comba method when there are su_cient 

registers available, but this fails to take into account the characteristics of the platform. Analyzing the running 

time of the 

Comba method, it can be concluded that the majority of the time is spent at one repeated step: multiply and 

accumulate. For each column of the result, it is necessary to compute many products and accumulate them in 

order to obtain the result of that column and the carries of the next two columns. The importance of the multiply 

and accumulate step (which we will refer to as \MulAcc") was noted before in [2,4]. However, what has been 

overlooked so far is the fact that the MulAcc is exactly what is provided by the MAC (Multiply and 

Accumulate) operation of the MSP430 hardware multiplier. 

The MulAcc step is illustrated in Figure 2. It consists of the reading of two integers, one from each operand, 

followed by their multiplication into a double precision integer, and _nally the addition of those two integers to 

a triple precision accumulator (the third only accumulates the carries of those additions).Fig. 1. Comparison of 

multiplication methods: Comba to the left, Hybrid to the right. Fig. 2. The MulAcc step, using as example the 

step for words a1 and b2. The registers r14 and r15 hold the pointers to the two 4-word operands. 

The pseudo-assembly code for the MulAcc step without using MAC is listed in Algorithm 1 and using MAC in 

Algorithm 2. Compared to Algorithm 1, Algorithm 2 has two less instructions, one less memory read and one 

less address in extension words, saving four cycles in total. This leads to a great speedup since the MulAcc step 

is repeated n2 times with n being the size of the operands in machine integers. Algorithm 1 Plain MulAcc step 

Input: x, the o_set address of an integer in the _rst operand (pointed by r14); y, the o_set address of an integer in 

the second operand (pointed by r15) 

Ouput: The multiplication of the integers and their accumulation into r4, r5, r6 mov x(r14),& MPY ;move first 

operand, specify unsigned multiplication mov y(r15),& OP2 ;move second operand add & RESLO,r4 ;add low 

part of the result addc & RESHI,r5 ;add high part of the result adc r6 ;add the carry 

Algorithm 2 MulAcc step using MAC Input: x, the o_set address of an integer in the _rst operand (pointed by 

r14); y, the o_set address of an integer in the second operand (pointed by r15)Ouput: Multiplication and 

accumulation into RESLO, RESHI, r6 mov x(r14),& MAC; move first operand; specify multiply and 
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accumulate mov y(r15),& OP2 ;move second operand add & SUMEXT,r6 ;add the carry The main advantage of 

using plain Comba with MAC compared to the Hybrid method is that the latter uses all of the 12 available 

registers, while the former leaves 8 free registers. These can be used as a simple cache for the operands. 

Additionally, one register can be used to save the address of the SUMEXT in order to add using the register 

indirect mode instead of register indexed, saving one more cycle in each MulAcc step (this requires a reordering 

of the instruc- tions since otherwise the SUMEXT is fetched before the two cycle delay of the hardware 

multiplier). Table 1 compares the instruction counts of our implemen- tation and those from [3]. It can be 

readily seen that the greatest savings come from the smaller number of add instructions, since the hardware 

multiplier does most of the additions by itself. Also, one cycle can be saved in each step due to the linear nature 

of the access of the _rst operand, which can be read with the register indirect with post-increment addressing 

mode (mov @reg+,&label). The multiplication timings are detailed in Table 2, where is clear that the Comba 

multiplier using the MAC optimization is indeed e_ective, and 9.2% faster than the Hybrid multiplier given in 

[3]. We have found that using Karat- suba multiplication with a 128-bit Comba multiplier is a little faster than 

using 256-bit Comba, and it also requires less code space. Table 1. Comparison of instruction counts of 160-bit 

multiplication Comba MAC Hybrid in [5] Instruction CPI Instructions Cycles Instructions Cyclesadd @reg,reg 

2 99 198 Other additions 309 709 

mov x(reg),&label 6 20 120 45 270 

mov reg,x(reg) 4 20 80 

mov reg,reg 1 27 27 

mov reg,&label 4 89 356 100 400 

mov x(reg),reg 3 13 39 45 135 

mov @reg+,&label 5 100 500 

mov @reg,&label 5 29 145 

mov @reg,x(reg) 5 20 100 

other 128 167 

Totals 1586 1746 

3.2 Reduction 

Traditional modular reduction can be an expensive operation because it needs costly divisions. Since the 

MSP430 has no divide instruction at all, they would need to be computed in software, which would be even 

more prohibitive. We have selected two algorithms in the literature that do not require divisions: Montgomery 

reduction [6] and Barrett reduction [7]. Montgomery reduction requires the operands to be transformed into a 

special Montgomery form. This is often not a problem since we can use the Montgomery form as the \o_cial" 

representation of all numbers in the cryptographic protocol being used and they would only need to be converted 

back, for example, to be printed on the screen for human reading. Montgomery reduction also requires a 

precomputed constant that is dependent of the machine integer size. The Montgomery reduction algorithm has 

almost the same structure as the Comba multiplication, with the _rst operand being the lower part of the double 

precision number to be reduced and the second operand being the prime mod- ulus. Therefore, one can employ 

the same MAC optimization to speed up the reduction. Barrett reduction is slightly more complex and it 
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involves half precision Comba multiplications. Each of these multiplications can also use the MAC 

optimization. It also requires a precomputed constant which is dependent of the prime modulus. 

 

Table 2. Timings for multiplication and squaring 

Algorithm Cycles Time (ms) 

160-bit multiplication 

Hybrid in [3] 1,746 0.22 

Comba MAC 1,586 0.20 

160-bit squaring 

Comba MAC 1,371 0.19 

256-bit multiplication 

Hybrid (Karatsuba, 128-bit Comba) 4,025 0.50 

Comba MAC (Karatsuba, 128-bit Comba) 3,597 0.45 

Comba MAC (256-bit Comba) 3,689 0.46 

256-bit squaring 

Comba MAC (Karatsuba, 128-bit Comba) 2,960 0.37 

There also are speci_c algorithms for reduction when the prime modulus has a special form. For primes of the 

form 2k �c such as the 160-bit primes from the SECG standard [8] the algorithm is described in [9]. For \NIST 

primes" [10], the algorithm is described in [11]. The reduction timings are presented in Table 3. The reduction 

timing from [5] was estimated by subtracting the reported multiplication timing in [3] from the _eld 

multiplication timing in [5]. While an exact comparison may be hard to make due to this inexact estimate, we 

notice again that the MAC optimization is very e_ective. The Barrett reduction was slower than Montgomery 

reduction, but since we have focused on optimizing Montgomery, we believe its speed can be further improved. 

As expected, reduction modulo a special form prime is much faster. Finally, the running times of algorithms for 

_eld multiplication { multiplica- tion followed by reduction { are given in Table 4. Compared to [5], _eld multi- 

plication using MAC is about 28% faster.  

Table 3. Timings for reduction 

Algorithm Cycles Time (ms) 

Modulo 160-bit prime 

Montgomery in [5] (estimated) 2,988 0.37 

Montgomery MAC 1,785 0.22 

SECG (prime: 2160 � 231 � 1) 342 0.04 

Modulo 256-bit prime 

Montgomery 4,761 0.60 

Montgomery MAC 3,989 0.50 

Barrett 4,773 0.60 

NIST (prime: 2256 � 2224 + 2192 + 296 � 1) 709 0.09 

Table 4. Timings for _eld multiplication (using Montgomery reduction) 
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Algorithm Cycles Time (ms) 

160-bit 

Hybrid in [5] 4,734 0.59 

MAC 3,389 0.42 

256-bit 

Hybrid 8,855 1.11 

MAC 7,604 0.95 

 

IV. IDENTITY BASED CRYPTOGRAPHY USING PAIRINGS 

It has been shown recently that identity-based cryptography using bilinear pair- ings is very appropriate in the 

wireless sensor network scenario [12]. There are many identity-based cryptographic schemes, but the most 

useful in this context probably is the non-interactive key agreement scheme [13,14,15] that allows two parties to 

compute a mutual key without interaction in order to bootstrap a secure channel using symmetric encryption, 

and will be described next. Let e : G1 _ G2 ! GT be a bilinear pairing with G1 and G2 being additive groups and 

GT a multiplicative group, all of them with a prime order r. Let H1 : f0; 1g_ ! G1 and H2 : f0; 1g_ ! G2 be two 

hash functions. The master key generation is done by the key generation center by choosing a random s 2 

f1; :::; r � 1g. The private key distribution is done before the deployment of the sensors by assigning a sensor A 

the identity IDA and private keys S1A = sH1(IDA) and S2A = sH2(IDA). 

Now, suppose sensors A and B wish to compute a shared key. If G1 and G2 

were the same group and the pairing was symmetric, then the two hash functions would be the same and the two 

private keys of each node would be equal. There- fore, A could compute e(S1A;H1(IDB)) and B could compute 

e(H1(IDA); S1B). 

Due to the bilinearity and symmetry, we have 

e(S1A;H1(IDB)) = e(sH1(IDA);H1(IDB)) 

= e(H1(IDA); sH1(IDB)) 

= e(H1(IDA); S1B) 

= e(S1B;H1(IDA)) : 

Then both parties can generate the same value, which can be used to derive a shared key. In our case, though, 

the pairing is asymmetric since the elliptic curves used are ordinary. Therefore, we need two private keys for 

each sensor, the hash functions are di_erent, and the last step in the equation is not valid. Still, we have two 

useful equations which can be easily veri_ed: e(S1A;H2(IDB)) = e(H1(IDA); S2B) and e(H1(IDB); S2A) = 

e(S1B;H2(IDA)). In [14], it is suggested that each party should multiply their sides of those two equations in 

order to compute the shared key, but this requires two pairing computations. In [5] it is 

suggested that the sensors could agree on which equation they should use with a little amount of 

communication. Instead, there is a simpler _x that maintains the non-interactive aspect of the protocol. It can be 

de_ned that the sensor with the smaller ID in lexicographical order should use its _rst private key in the _rst 

pairing parameter and the other its second private key in the second pairing parameter, therefore choosing one of 

the equations without any interaction. 
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4.1 MNT Curve over a 160-bit Field 

For 160-bit _elds, we have implemented two security levels. To allow compar- isons, the _rst one is the same 

described in [5] which uses a MNT curve of embedding degree 4. These parameters where chosen in order to 

provide mini- mum acceptable security; the 640-bit extension _eld used gives approximately 64 bits of security 

[16]. The authors chose the Tate pairing instead of the faster Ate pairing since hashing a identity to a point in G2 

is simpler in the Tate pairing. The Miller loop is implemented using the sliding window technique with w = 3. 

The second level of security chosen follows a similar implementation but using a MNT curve with embedding 

degree 6. This results in a 960-bit extension _eld that provides approximately 70 bits of security [17]. 

The respective _nite _eld operation and pairing computation timings are detailed in Table 5, which shows that 

the MAC optimization leads to a 20.2%speedup in the 64-bit level. It is important to remark that in [5] the 

authors chose to compile their code with optimization turned o_; the reason given is that the di_erence in speed 

obtained by using di_erent compilers is very signi_cant when using optimization and that would make any 

comparisons harder. Still, we feel that providing the timings for the optimized versions would lead to more 

interesting comparisons.  

4.2 BN Curve over a 256-bit Field 

For the 128 bits security level, the Barreto-Naehrig family of curves [18] was chosen. They have an embedding 

degree of 12 and provide a sextic twist that allows the doubling and adding of Miller's algorithm to be 

performed on the curve over IFp2 instead of the costly IFp12 . The curve chosen is the one generated by the x 

value of �0x4080000000000001 suggested in [19]. Regarding the BN formulas, one can _nd in the literature 

di_erent values for p(x): the original paper [18] uses p(x) = 36x4+36x3+24x2+6x+1 but some other papers 

[19,20] use p(x) = 36x4 �36x3 +24x2 �6x+1, which gives the same value when using x with inverted sign. We 

use the original version. The pairings chosen were the Optimal Ate [21], R-ate [22] and Xate [19]; all of them 

optimal pairings as de_ned in [21]. They provide optimal speed by truncating the Miller loop by a quarter. We 

follow the approach detailed in [20] Table 5. Timings for _eld operations and pairing computations on MNT 

curves Algorithm Optimization Cycles Time (ms) 

Field operations 

Multiplication 3,389 0.42 

Squaring 3,172 0.40 

Inversion 187,575 23.45 

MNT curve, k = 4 

Tate [5] O_ 37,739,040 4,717 

Our Tate (MAC) O_ 30,125,088 3,766 

Our Tate (MAC) On 26,553,690 3,319 

MNT curve, k = 6 

Our Tate (MAC) O_ 51,199,102 6,400 

Our Tate (MAC) On 40,869,215 5,109 

but using the _nal exponentiation optimization from [23]. Since the Miller loop runs through the bits of 6x + 2 

(or x in Xate), which has low Hamming weight, the sliding window technique is not appropriate and was not 
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used. We present the timings for the _nite _eld operations and pairing compu- tations in Table 6. The pairing 

computation is much more expensive than in the MNT curve, and probably unacceptable for the wireless sensor 

scenario. As noted in [24], it is important to keep in mind that the pairing computation scales more-or-less like 

RSA rather than like elliptic curve cryptography. It is also worth noticing that the three kind of pairings give 

almost the same speed, with the Xate pairing being a little faster. We describe the Xate pairing for BN 

curves in Algorithm 3. The ROM and RAM requirements of the pairing computation program are listed in Table 

7. To put them in perspective, we note that popular sensors have such as Tmote Sky and TelosB have 48KB of 

ROM and 10K of RAM. The code size is still large; though it is only possible to determine its feasibility by 

analyz- ing speci_c applications. The amount of RAM allocated is probably tolerable, since most of it is 

allocated from the stack and freed after the computation. 

 

V.ELLIPTIC CURVE CRYPTOGRAPHY 

While identity based schemes built with pairings seem ideal for the wireless sen- sor scenario, they still are 

expensive, mainly in the higher 128-bit level of security. For that reason, we have also implemented the cheaper 

elliptic curve cryptogra- phy in order to allow comparison with pairing-based cryptography. To illustrate a 

concrete use, the ECDSA (Elliptic Curve Digital Signature Algorithm) [10] was chosen for its popularity and 

wide standardization. However, it is important to notice that elliptic curve cryptography still requires the 

expensive public key authentication which is outside the scope of this work. 

Algorithm 3 Xate pairing for BN curves 

Input: x 2 ZZ (the BN parameter), Q 2 E0(IFp2 ), P 2 E(IFp) 

Ouput: _(Q; P) 2 IFp12 

1: v;xQ ( fjxj;Q(P) ffr;Q if the Miller function, it also computes rQg 

2: if x > 0 then 

3: v ( 1=v 

4: xQ = �xQ 

5: end if 

6: v ( v1+p+p3+p10 

7: v;A ( gxQ;pxQ(P) fgP;Q is the line function from the Miller function, it also 

computes P + Q g 

8: v;B ( gp3xQ;p10xQ(P) 

9: v;C ( gA;B(P) 

10: return v(p12�1)=r 

Table 6. Timings for _eld operations and pairing computations on the BN curve 

Algorithm Cycles Time (ms) 

Field operations 

Multiplication 7,569 0.95 

Squaring 6,952 0.87 

Inversion 380,254 47.53 
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Pairings 

Optimal Ate 117,597,798 14,700 

R-ate 117,514,219 14,689 

Xate 116,130,546 14,516 

Table 7. ROM and maximum allocated RAM size for pairing programs 

Version ROM (KB) RAM (KB) 

BN 256 bits, Karatsuba w/ Comba 128 32.3 4.7 

BN 256 bits, Comba 256 36.2 4.7 

MNT 160 bits, Comba 160 28.9 2.3 

MNT 160 bits, Comba 160 in [5] 34.9 3.4 

The ECDSA is composed by key generation, signature generation and veri- _cation. The key and signature 

generation require a _xed point multiplication that is their most expensive operation. In our implementation, we 

have used the Comb algorithm with window size 4 [11] which requires the precomputation of 15 elliptic curve 

points. For the signature veri_cation, we have used the in- terleaving algorithm with NAF [11] of width 5 and 4 

for the _xed and random points, respectively. 

At the 80-bit level of security, the secg160r1 [8] curve was chosen which allows fast reduction [9] due to its 

special form modulus. This curve has �3 as its b parameter to enable a known optimization in the point 

doubling. At the 128- bit level of security, the P-256 curve [10] was chosen which also provides fast reduction 

[11] due to its special form modulus (\NIST prime"). This curve also has �3 as its b parameter. We present the 

timings for the _nite _eld operations and point multiplication in Table 8 and the ECDSA timings in Table 9. The 

timings results of our imple- mentation are faster than [25], but they do acknowledge that their work leaves 

room for much optimization. Also notice that the 5NAF is not adequate since it is just a little faster than 4NAF 

but requires double storage space. The Mont- gomery ladder method [26], while secure against side-channel 

attacks (timing and power analysis), is 40{50% slower than 4NAF. The ROM and RAM requirements for the 

ECDSA program are listed in Table 10. The ROM sizes are about 5% smaller than the pairing-based 

cryptography, and seem to be acceptable, specially in the 80-bit level of security. The RAM requirements are 

also realistic since most of it is freed after the computation. Table 8. Timings for _eld operations and point 

multiplication for the given curves secg160r1 P-256 

Algorithm Cycles Time (ms) Cycles Time (ms) 

Field operations 

Multiplication 1,952 0.24 4,327 0.54 

Squaring 1,734 0.22 3,679 0.46 

Inversion 187,575 19.27 292,170 36.52 

Random point multiplication 

4NAF 4,417,661 0,552 13,372,271 1,672 

5NAF 4,433,104 0,554 13,188,903 1,649 

Montgomery ladder 6.319,383 0,790 20,476,234 2,560 

Unknown from [25] 0,800 
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Fixed point multiplication 

Comb, w = 4 1,831,063 0,229 5,688,793 0,711 

Comb, w = 4 in [27] 0,720 

Sliding window, w = 4 in [25] 0,720 

Simultaneous point mult. 

Interleaved 5,204,544 0,651 15,784,176 1,973 

Table 9. Timings for ECDSA 

secg160r1 P-256 

Algorithm Cycles Time (s) Cycles Time (s) 

Key Generation 1,849,903 0.231 5,682,433 0.710 

Sign 2,166,906 0.270 5,969,593 0.746 

Verify 5,488,568 0.686 16,139,555 2.017 

Table 10. ROM and maximum allocated RAM size for elliptic curve programs 

Version ROM (KB) RAM (KB) 

256 bits, Karatsuba w/ Comba 128 25.7 3.5 

256 bits, Comba 256 29.5 3.5 

160 bits, Comba 160 23.5 2.5 

160 bits, Comba 160 in [27] 31.3 2.9 

 

VI. CONCLUSION 

Implementing e_cient cryptographic schemes on wireless sensor networks is a di_cult task, but feasible. It is 

important to analyze every feature o_ered by the platform in order to get the best results, as can be seen with the 

simple but e_ective optimization using the MAC operation from the hardware multiplier of the MSP430. Still, 

there is plenty of work to be done. As our implementation has shown, there is a steep price to be paid in the 128-

bit level of security pairing computation (14.5 seconds). Some relevant future work that we would suggest is to 

provide a fast implementation of identity based cryptography in other security levels and implement in software 

the recently proposed method to speed up _nite _eld arithmetic for BN curves [28].  
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