International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.04, April 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

Zero-Forcing Equilization Technique for MIMO System

Mr. Udayraj Chaudhari¹, Ms. Priyanka Wakchoure², Ms. Karima Shaikh³

¹Extc, Mumbai/SSJCET, Asangaon, India

²Extc, Mumbai/SSJCET, Asangaon, India

³Extc, Mumbai/SSJCET, Asangaon, India

ABSTRACT

The wireless communication systems offer high Data rate, Wide coverage and improved reliability. To achieve these in wireless communication the MIMO systems are used that can efficiently increases the data transmission rate and the system coverage by considering multiple numbers of transmitter antennas and receiver antennas and spatial dimensions are used. When the data is transmitted at high rates, due to this Inter-symbol interference (ISI) occurs. To eliminate this effect different equalization techniques are used. Equalization techniques such as Zero forcing equalizer (ZFE), minimum mean square error (MMSE) and maximum likelihood (ML) detection algorithms can be employed. This study will analyse the performance of equalization technique by considering multiple transmit and multiple receive antenna over a flat fading Rayleigh channel and gives a bit error rate analysis of the same. MIMO system transmission with Binary Phase Shift Keying Modulation (BPSK) in Rayleigh fading channel is considered.

Keywords- Bit error rate (BER), Multiple input multiple output (MIMO), Maximum likelihood (ML), Minimum mean-squared error (MMSE), Zero Forcing (ZF).

I. INTRODUCTION

High data rate in wireless system causes intersymbol Interferences [1]. MIMO techniques extend the promise of high spectral efficiency and hardiness to fading. Key to their success is the MIMO equalizers used at the receiver [2], which will recover the symbols that are transmitted simultaneously from multiple antennas. Equalizers are categorized into linear and non-linear equalizers. Linear equalizers are ZF which implements matrix (Pseudo)-inverse (ignores noise enhancement problems) and MMSE optimizes the noise and offers a compromise between residual interference between input signals and noise enhancement. Non-linear receivers are ML.ML is exhaustive optimum detection equalizer uses complexity exponential in QAM. This paper coverage ranges from simple linear equalizers based on the zero-forcing and MMSE criteria to the optimal maximum-likelihood are described.

The focus of this paper is on the development of such novel practical, low complexity equalization techniques and understanding their potential and limitations when used in wireless communication systems characterized by very high data rates, high mobility and the presence of multiple antenna.

International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.04, April 2018

www.ijarse.com

ISSN: 2319-8354

II.EQUALIZATION

When the signal passes through the channel, distortion is Introduced in terms of amplitude and delay, which results with Inter Symbol Interference (ISI).ISI distorts the transmitted data, causing bit errors at the receiver.ISI has been recognized as the major drawback in high speed data transmission over wireless channels. Hence, Equalizers used to combat ISI [3].An equalizer is implemented at the baseband [5] or at IF in a receiver. And the basic receiving technique of any communication lies with noise signal performance. Hence to suppress the noise component present in communication [4], we should go for equalization technique. Since the baseband complex envelope expression can be used to represent band pass waveforms, the channel response, demodulated signal and adaptive equalizer algorithms are usually simulated and implemented at the baseband [3].

III.MIMO SYSTEM

For 2×2 MIMO system

The received symbols after transmission of symbols in first time slots can be given as the received [4] symbol on first receive antenna is,

$$y1 = h1,1x1 + h1,2x2 + n1 = [h1,1h1,2] [x1 x2] + n1$$
 (1)

The received signal on the second receive antenna is,

$$y2 = h2,1x1 + h2,2x2 + n2 = [h2,1h2,2] [x1 x2] + n2$$
 (2)

$$H = [h1,1 h1,2 h2,1 h2,2]$$
 (3)

Where y1, y2 are the received symbols on the first and second antenna respectively,

h1,1 is the channel from 1st transmit antenna to 1st receive antenna,

h1.2 is the channel from 2nd transmit antenna to 1st receive antenna,

h2,1 is the channel from 1st transmit antenna to 2nd receive antenna,

h2,2 is the channel from 2nd transmit antenna to 2nd receive antenna,

x1, x2 are the transmitted symbols and

n1,2 is the noise on 1st, 2nd receive antennas.

Above equation can be written as

$$y = Hx + n \tag{4}$$

Here Y is the received symbol

H is a Rayleigh fading channel matrix

X the transmitted symbol matrix

N is the noise matrix

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.04, April 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

IV.LINEAR EQUALIZERS

There are two types of linear equalizers: Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) which shall be discussed shortly. The former equalizer cancels all ISI, but can lead to considerable noise enhancement. The latter technique minimizes the expected mean squared error between the transmitted symbol and the symbol detected at the equalizer output, thereby providing a better balance between ISI mitigation and noise enhancement [12]

4.1 ZERO FORCING (ZF) EQUALIZER

The ZF Equalizer is a linear equalization algorithm used in communication systems proposed by Robert Lucky. It works by inverting the frequency response of the channel. In order to restore the signal before the channel, the equalizers apply the inverse of the channel to the received signal. The name Zero Forcing corresponds to bringing down the Inter Symbol Interference (ISI) to zero. But while doing so there may be an amplification of the noise term present [1].

The ZF equalizer is simple to implement but suffers from the problem of noise amplification hence not suitable for channels with high noise characteristics [1]

Mathematical Modeling of ZF equalization Matrix

In matrix notation;

$$[y1 \ y2] = [h1,1 \ h1,2 \ h2,1 \ h2,2][x1 \ x2]+[n1 \ n2]$$
 (5)

Equivalently,

$$y = Hx + n$$

To solve for x, there is the need to find a matrix W which satisfies WH = 1. The Zero Forcing (ZF) detector for meeting this constraint is given by,

$$W = (H^{\mathrm{H}}H)^{-1}H^{\mathrm{H}} \tag{6}$$

Where: W - Equalization Matrix, and H - Channel Matrix. This matrix is known as the Pseudo inverse for a general m x n matrix.

V.MIMO SYSTEM MODEL

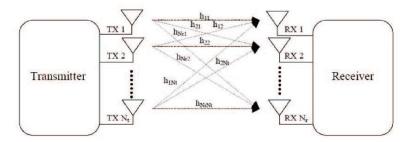


Fig. 1. MIMO system Model

International Journal of Advance Research in Science and Engineering Volume No.07, Special Issue No.04, April 2018 IJARSE WWW.ijarse.com ISSN: 2319-8354

VI.CONCLUSION

In this paper, we study the performance of Zero Forcing equalizer for MIMO wireless receiver. Study analysis shows that the Zero Forcing detection equalizer plays a very vital role to improve the performance of the MIMO system.

REFERENCES

- [1] G..I. Foschini and M..I. Gans, "On limits of wireless communications in a fading environment when using multiple antennas", Wireless Personal Communications, vol. 6, pp. 311-33S, 1998,
- [2] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj, H.Vincent Poor "MIMO Wireless Communications", Cambridge University Press, (2007).
- [3]X. Zhang and S. Kung, "Capacity analysis for parallel and sequential MIMO equalizers," IEEE Transactions on Signal Processing, vol. 51, pp. 2989-3002, November 2003.
- [4]Rohit Gupta, Amit Grover," BER Performance Analysis of MIMO Systems Using Equalization Techniques", Innovative System Design and Engineering, vol.3, no.10, pp.11-25, 2012
- [5] John G. Proakis. "Digital Communication", 4lh ed., Tata McGraw Hill. New York.
- [6]. Tellado, L.M.C. Hoo, and J.M. Cioffi, "Maximum-Likelihood Detection Of Nonlinearly Distorted Multicarrier Symbols by Iterative Decoding," IEEE Transactions on Communications, vol. 51, no. 2, pp. 218-228, 2003.