

918 | P a g e

Regression Testing in Web Application using TCP

Mrs. Priyanka S Kalsule, Ms. Pranjali D Dagwar

1,2 Lecturer,Department of Computer Engineering, GSMIT, Balewadi Pune, India

Abstract- For increase rate of fault detection test case prioritization is needed, which shows how fast bugs are

identified during the testing phase. In test case prioritization follow way to use the information of previously

executed test cases, such as coverage information, resulting in an iterative prioritization algorithm. Real fact of

using coverage information can improve the rate of fault detection in prioritization algorithms. But performance

of such iterative prioritization schemes degrade as the number of ties occurred in prioritization steps increases.

In test case prioritization using lexicographical ordering and extended diagraph, we propose a new heuristic for

breaking ties in coverage based techniques. Performance of the proposed technique in terms of the rate of fault

detection is comparatively evaluated using a wide range of programs. Results indicate that the proposed

technique can resolve ties and in turn noticeably increases the rate of fault detection.

Keywords- Statement Coverage, Fault-Based, Test Case Prioritization, GUI testing, HMM, Model-Based

Testing (MBT), Random Prioritization, Reinforcement Learning

I. INTRODUCTION

The complexity and size of software systems are growing, along with the increasing importance of testing and

verifying these systems. As a result, many test suites produced during development are reused in a regression

testing mode, especially during software maintenance or evolution. A software product, once developed, has a

long life and evolves through numerous additions and modifications based on its faults, changes of user

requirements, changes of environments, and so forth. With the evolution of a software product, assuring its

quality is becoming more difficult because of numerous release versions [1]. Users expect to get a new and

better quality software version than before. In some cases, the quality of software becomes worse than before

because of the added or modified features which create additional faults into the existing product as well as the

newly modified version. For assuring good quality software, testing is mandatory. Evaluating a system with the

intention of finding faults is known as Software Testing. Once system has been developed, it must be tested

before implementation. It is oriented towards Error-detection [2]. Software testing is one of the major and

primary techniques for achieving high quality software. It is done to detect the presence of faults, which cause

software failure. It can also be referred as the process of verifying and validating software application or

program to ensure that software meets the technical as well as business requirements as expected [3] [4].

919 | P a g e

a. Background

For testing, a software engineer often uses test cases. A test case is a set of conditions or variables and inputs

that are developed for a particular goal or objective to be achieved on a certain application to judge its

capabilities or features. It might take more than one test case to determine the true functionality of the

application being tested. Every requirement or objective to be achieved needs at least one test case. Some

software development methodologies like Rational Unified Process (RUP) recommend creating at least two test

cases for each requirement or objective; one for performing testing through positive perspective and the other

through negative perspective. Regression testing is a kind of software testing that focuses on selective retesting

through various versions of a software system [5]. The following is the formal definition of regression testing

used by IEEE. “Selective retesting of a system or component to verify that modifications have not caused

unintended effects and that the system or component still complies with its specified requirement” [6]. Another

popular software testing technique is Test Case Prioritization. In this technique, each test case are assigned a

priority. Priority is set according to specific criterion and test cases with highest priority are scheduled first.

Another criterion may be the rate at which fault is detected [7]. The goal of this research is to find a metric to

quantify the rate of dependency detection among faults and provide an algorithm that prioritizes the test cases in

an order that has improved dependency detection rate compared to non-prioritized test cases. By the definition

of the test case prioritization, problem represents a quantification of such goals.

b. Motivation

In the paper [8], researchers proposed an algorithm to measure effectiveness of test case prioritization in

regression testing and a prioritization technique which can be used to improve the fault detection process for

regression testing. In [8], researchers only considered the dependent faults which are fully dependent on other

leading faults. But did not consider the fact that, there can be faults that are not fully dependent rather mutually

dependent on more than one fault. The detection of the independent and fully dependent faults is covered

simultaneously in this software testing approach. But, an efficient example needed to be set along with the

independent and dependent faults (both fully and partially) to make an efficient approach. Further, a sizable

performance gap can be seen as prioritization is done only with taking the fully dependent faults into

consideration, not the partially dependent faults.

Hence, in order to overcome these issues, in current research paper, we will extend this research work to

investigate the above mentioned weaknesses and will provide an alternative or improved version of

prioritization technique including different methods of fault detection methods. A thorough research in this field

may help to detect faults as early as possible.

In this paper, we will extend the research of prioritizing test cases considering fault dependency mentioned in

[8], as we think fault dependency consideration is incomplete there. In this paper, our goal is to include the fault

dependency considering both fully and mutually dependent faults for doing complete test case prioritization.

920 | P a g e

The section I includes Introduction which describes the background and motivation of this work. Section II

presents the relevant work published in literature in the area of test case prioritization. Section III details about

mathematical model. Proposed system is presented in section IV. The results are discussed in section V. Section

VI presents the Conclusion.

II. LITERATURE REVIEW

This paper proposed an approach for test case prioritization in order to improve regression testing. Analysis is

done for prioritized and non-prioritized cases with the help of APFD (average Percentage fault detection)

metric. It is proven that when the prioritized cases are run then result is more efficient. In future test case

prioritization can be done by using more factors and evaluate By PTR and risk metrics [1].

In this paper we describe requirement based test case prioritization technique. This proposed Technique is

highly useful to identity and evaluate various issues arises while working with varying requirement

environment. The proposed prioritization technique used most efficient Factors to prioritize test suite because

the errors introduced in the requirement phase is approximately 50% of all faults detected in the entire project.

The change in requirements is the major factor attributable to the failure of the project so we prioritize test cases

according to Requirement priority and requirement factors [2].

This paper deals with ESG model based test case prioritization problem for a large number of test cases.

Improving our previous study, new model-event based TCP approach where instead of ordering indirectly test

cases according to their preference degree they are automatically divided into the five groups (classes). It is

provided thanks to representing prioritization group label of each test case as output depending on two

attributes: important index weighted by membership degree and frequency of occurrence of all events belonging

to given group. Then, such a way for all test cases (100) formed data set is classified by using MLP neural

network. The structure of NN-classifier for commercial test application has been defined and its performance is

examined. Application results show high classification accuracy and the acceptable test prioritization

performance [3].

Our algorithm is based on analysis of the percentage of test cases performed to find the faults and on APFD

metric’s results. Abiding by the percentage of executing test cases in earlier fault detection is important as

sometimes regression testing ends without executing all test instances. Outcomes demonstrate that our

algorithms can also achieve better execution in this event. For instance, in the first project if only 75% test cases

could be melt down due to resource constraint, random strategy could find more or less 66% faults; while our

proposed algorithm detects about88% faults. In a second project if we consume 30% test cases to accomplish;

then random strategy could find more or less 27% faults; while our proposed algorithm detects about 40%

faults. This shows clear evidence that our proposed algorithm is a lot better in earlier fault detection than

random technique. The graphical representation of these outcomes is presented at a lower place [4].

In this paper, we proposed a new prioritization technique for prioritizing system level test cases to improve the

rate of fault detection for regression testing. Here we propose new practical set of weight factors used in the test

case prioritization process. The new set of are tested for the regression test cases. The proposed prioritization

algorithm is validated by using APFD metric. Experimental Results shows that proposed technique leads to

921 | P a g e

improve the rate of fault detection in comparison with random ordered test cases and reserves the large number

of high priority test with least total time during a prioritization process [5].

In this paper a new prioritization technique to improve the rate of fault detection of severe faults for Regression

testing is proposed. Here, two factors rate of fault detection and fault impact for prioritizing test cases are

proposed. The proposed algorithm is validated by analyzing two sets of industrial projects. Results indicate that

the proposed technique lead to improved rate of detection of severe faults in comparison to random ordering of

test cases. And also it is tested experimentally that the number of test cases runs to find the entire fault is less in

case of proposed prioritization technique. The results prove that the proposed prioritization technique is

effective. In future, test case prioritization over requirement analysis will be tried [6].

In this section we are going to discuss about Software testing. Then we will focus about the importance of

software testing and test cases. Finally we will narrow down the topic into test case structures, test case

designing and test cases. We will also focus on test case prioritization technique, existing techniques for test

case prioritization, its problems and our focus area.

III. MATHEMATICAL MODEL

Let Us consider Test case prioritization and bug triage

S = {s, e, X, Y, Fme, DD, NDD, }

Where

 s = Start of the program.

 1. Log in with System

 2. Load dataset of bugs for test cases

 3. Word dimension

 4. Bug dimension

 e = End of the program.

 Test cases prioritization using Lexicographical Ordering and extended diagraph

 X = Input of the program

 Test cases from sample bug report

 Y = Output of the program

Reduced Bug report for developer to fix them

 X, Y U

Let U be the Set of System.

 U= {User, FS, IS, Cluster}

 Where User, FS, IS, Cluster are the elements of the set.

 User=Developer

 FS=Feature Selector

922 | P a g e

 IS=Instance Selector

 Cluster= Cluster

Fme = {F1, F2, F3, F4, F5}

 Where,

 F1= Input bug report and words

 F2= Apply CH->ICF and ICF ->CH

 F3= Naïve Bays Algorithm .

 F4= Genetic Algorithm

 F5= Generate reduced bug report

The value function specifies “how good” it is for the agent to be in a given state. The how good notation

here is expressed in terms of future rewards that can be expected. We can define the value of state s under policy

π, formally, .

Similarly, the value of performing an action a in state s (the state action value function, or Q-value function, Q :

S × A→ R) can be defined as

Q-learning estimates the agent’s Q-value function based upon an action’s Q-value estimation; this process is

incrementally evaluated as follows

Qk+1 (s t, at) = Q k (s t, at)+a(r t+ ϒ max Q k(s t, a)-Q k(s t, at))

We define the forward probability, (t) t), as the joint probability of observing the first t vectors , T = 1. . . t

while in state k at time t. Another way to state this would be that (t) is the probability of observing while; in

addition, at time t the state is k.

 a k(t)= p (v1, v2, … … …, vt, st =k | Λ)

This probability can be evaluated by the following recursive formula:

 a k(1)=π k b k(v1), 1 ≤ k ≤ N

923 | P a g e

However, when the sequences of observations (the length of the episodes) become larger,

the probabilistic values in the forward algorithm get increasingly small and, after multiple iterations, the values

tend to zero. For that reason, αk (t) are scaled during the iterations of the algorithm to avoid underflow

problems. The scaling coefficients are used to keep the probability values in the dynamic range of the machine.

So, the coefficient ct is defined as follows

Using, the scaled value of αk (t) would be

Given: T (a test suite), PT (a set of permutations of T), and f (a Function that maps PT onto a real number).

Problem: Find T´ ϵ PT such that

IV. PROPOSED SYSTEM

The proposed prioritization STRATEGY is BUILT up by JOINING Reinforcement Learning (RL) and Hidden

Markov Model (HMM) concepts to efficiently and rapidly prioritize test cases. The main reasons for choosing

Reinforcement Learning are its strong statistical background, its proven capacity in handling a extensive range

of data, and its capacity to re-estimate the Markov model efficiently. Utilizing RL, we are able to estimate an

appropriate HMM and then use it to compute each test case’s forward probability, that is, the likelihood of

executing a specific test case based upon the SUT’s gathered HMM.

Advantages of Proposed System

1. They calculate the fault detection rate of every strategy and discovered their proposed methods are able

to improve the rate.

2. It delineates that considering GUI states and activities plays a crucial role in improving the fault

detection rate.

3. We can reduce the time required to execute test cases and improve the likelihood of consume testing

time more beneficially in the case of an unexpected termination of regression testing activities.

924 | P a g e

Figure 1: Proposed System Architecture

V. RESULTS AND DISCUSSION

In this section the results of test case generation for existing (random) method and proposed (prioritization)

method are discussed. The following table shows the performance of the existing and proposed system in terms

of percentage of test case generation.

Figure 2: Comparison of Existing and Proposed Method

925 | P a g e

Result Table:

 Table: Comparison of Existing and Proposed Method

Module Base

Test Case

Generation

Random

Method

Performance

(%)

Prioritization

Method

Performance

(%)

10% 0 10

30% 15 20

50% 40 50

70% 64 87

90% 90 98

Comparison of existing and proposed system:

Existing System

Existing system defines the problem of fault detection rate by a measure of how fast a test suite is able to

diagnose faults during testing with aspect of regression testing. Assignment of appropriate developer to solve

fault detected in testing.

Proposed System

a) Techniques

In existing system random technique is used for test cases and in proposed system we are using prioritization

technique for test cases.

b) Order

In existing system test case view as Q-values with order of descending sort technique, in proposed system we

are using as Q- values with first in first out techniques.

Test case Solving

In existing system using only part of generation test case and schedule test case with help of Q-value and in

proposed system bug triage technique for solving test cases.

VI. CONCLUSIONS

We propose a prioritization for Test Case. This paper refers shopping application for generation of test cases

using technique of prioritization. We present an approach to initialize an appropriate GUI based on a Q-learning

algorithm. Then we use the estimated model to compute the likelihood (forward probability) of the generated

test case of forward probabilities. In addition, we propose another technique which uses the summation of each

926 | P a g e

test case’s Q-value in order. Thus, test cases with higher amount of accumulated Q-value get higher first in and

first out order. First, we intend to perform additional studies on more applications such as Web-based. Second,

in this study we only consider GUI applications. We want to evaluate this method further; we are working on

presenting a generic approach to generate an RL-based weighted model for every type of application. Such

techniques can be utilized to compute the reward function and Q-values in non-GUI-based applications. Third,

we need the best sequence of GUI states contributing to the most appropriate prioritized test suite.

REFERENCES

[1] Sahil Gupta1, Himanshi Raperia2, Eshan Kapur3, ” a novel approach for test case prioritization”,

Department of Computer Engineering, LPU, Jalandhar, India.

[2] Aseem Kumar1, Sahil Gupta2, Himanshi Reparia3, “An Approach For Test Case Prioritization Based Upon

Varying Requirements”, 1Research scholar, Department of Computer Engineering, Lovely Professional

University, Phagwara, India.

[3] Nida Gökçe1, Mübariz Eminli2.” Model-Based Test Case Prioritization Using Neural Network

Classification”, 1Department of Statistics, Muğla Sıtkı Koçman University, Muğla, TURKEY

2Department of Computer Engineering, Halic University, İstanbul, TURKEY.

[4] Thillaikarasi Muthusamy1 and Dr. Seetharaman.K2, “Effectiveness Of Test Case Prioritization Techniques

Based On Regression Testing”, 1Department of computer science, Annamalai University, Annamalai

Nagar, Tamilnadu, India.

[5] Thillaikarasi Muthusamy1 , Seetharaman.K2, Ph.D,”A New Effective Test Case Prioritization for

Regression Testing based on Prioritization Algorithm “,1(Assistant Professor) Department of computer

science and Engineering, Faculty of Engineering and technology Annamalai University,Annamalai Nagar,

Tamilnadu,India-608002.

[6] R. Kavitha, Dr. N. Sureshkumar , ”Test Case Prioritization for Regression Testing based on Severity of

Fault”, Velammal College of Engineering and Technology Madurai, Tamilnadu, India.

[7] P. R. Srivastava, (2008). Test case prioritization. Journal of Theoretical and Applied Information

Technology, vol: 4(3), pp: 178-181.

[8] B. Hoq, S. Jafrin, S. Hosain, “Dependency Cognizant Test Case Prioritization”. [Unpublished research work,

Undergraduate thesis].

[9] E. Dustin, “Effective Software Testing: 50 Ways to Improve Your Software Testing”, Addison-Wesley

Longman Publishing Co. Inc., 2002.

[10] S. H. Trivedi, ”Software testing techniques”, International Journal of Advanced Research in Computer

Science and Software Engineering, vol: 2(10), pp: 433-438, 2012.

[11] A. G. Malishevsky, J. R.Ruthruff, G. Rothermel, and S. Elbaum, “Cost-cognizant test case prioritization”,

Department of Computer Science and Engineering, University of Nebraska-Lincoln, Techical Report.2006

[12] I. Sharma, J. Kaur, M. Sahni, “A Test Case Prioritization Approach in Regression Testing”,2014.

927 | P a g e

[13] C. Sharma, S. Sabharwal,R. Sibal, ”A survey on software testing techniques using genetic algorithm”,

arXiv preprint arXiv:1411.1154, 2014.

[14] C. Kaner, “What is a good test case”. Star East, 16, 2003

[15] G. Rothermel, R. H. Untch, , C. Chu, M. J. Harrold, “Test case prioritization: An empirical study. In

Software Maintenance”, IEEE International Conference on 1999.(ICSM'99) Proceedings. , pp: 179-188,

1999.

[16] J. M. Kim, A. Porter, G. Rothermel, ”An empirical study of regression test application frequency”,

Software Testing, Verification and Reliability, vol: 15(4), pp: 257-279,2005.

[17] G. Rothermel, S. Elbaum, , A. G. Malishevsky, P. Kallakuri and X.Qiu, “On test suite composition and

cost-effective regression testing”, ACM Transactions on Software Engineering and Methodology

(TOSEM), vol: 13(3), pp: 277-331, 2004.

[18] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development environment”, ACM

SIGSOFT Software Engineering Notes , vol. 27, No. 4, pp: 97-106), July,2002 .

[19] H. K. Leung and L. White, “Insights into regression testing [software testing]”, Software, Maintenance,

1989., Proceedings., Conference on, IEEE, pp. 60-69, October,1989.

[20] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques” , Software Engineering,

IEEE Transactions on, vol: 22(8), pp: 529-551, 1996.

[21] S. Elbaum, D. Gable and G. Rothermel, “Understanding and measuring the sources of variation in the

prioritization of regression test suites”, In Software Metrics Symposium, 2001. METRICS 2001.

Proceedings. Seventh International IEEE, pp: (pp. 169-179), 2001.

[22] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, “Prioritizing test cases for regression testing”,

Software Engineering, IEEE Transactions on, vol: 27(10), pp: 929-948, 2001.

