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ABSTRACT

Developers need performance prediction tools that are capable of providing information on the future
performance of the embedded system. This paper describes a performance analyser tool developed to predict
the performance. we have implement to simpler, realistic and implementable analytical models based on the
sound principles of Performance Engineering and Regression Techniques. System design is for reducing the
turnaround time of software development. Also reducing the turnaround time after the modification of the
source code due to changes in problem specification. predicting the performance of application software at
source code level using comprehensive method that combines analytical modeling and statistical approach. We
take samples from EEMBC and SMV benchmarks and gather the static attributes from the source code of those
samples as our learning set. We then apply multiple linear regression technique enhanced with statistical tool
SPSS23 to predict the performance of these functions.
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I.INTRODUCTION

In this work, we use predictive model to predict the performance. which uses a comprehensive method that
combines analytical modeling and statistical approach. Performance prediction is critical in embedded system
design for reducing the turnaround time of software. Using simulation to measure the performance of the whole
source code is often too slow, particularly after the modification of the source code due to changes in problem
specification. In this paper we present a comprehensive method that combines analytical modeling and statistical
approach to predicting the performance of application software at source code level.

The analytical performance model represent light-weight mathematical models which are easy to implement.
These models predict performance metrics of enterprise software systems, namely throughput, maximum
concurrent user load, response time, and CPU utilization for anticipated loads in future with acceptable
deviation and minimal data collected from a scaled-down environment. These models can reduce the effort
required to run several incremental load tests and also help save on licensing costs of load simulation tools. The
validation of these models using data from real-world enterprise applications is currently in-progress. The

analytic model on which this paper is partially based is a modification of our earlier work on DSP processors
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[2]. The model is modified by introducing a new parameter, a product term of TNinner * Linner, where TNinner
is the number of statements and Linner represnets the number of total iterations of the innermost loop of source
code. Over the past decade, several investigators used statistical approach to predict software performance with
certain success [3, 4, and 5]. They used the hardware attributes of different processors to predict the
performance of software that ran on them. To enhance our original analytic model, we take into consideration of
the static attributes of the source code and make use of statistical techniques, and some new approaches to
predict the performance.

Group of EEMBC and all eight functions of SMV benchmarks as the samples of learning set. EEMBC
benchmark is an industry standard for embedded processors and software developed by the Embedded
Microprocessor Benchmark Consortium, a non-profit organization [6]. SMV benchmark is developed by us in
2006 [7] which consists of eight kernels chosen from the Selectable Mode Vocoder (SMV) application program
for 3G wireless communications. We then gather the static attributes from the source code of those samples,

conduct multiple linear regressions analysis by using a popular statistical tool SPSS23.

I1.OVERVIEW OF PERDECTIVE MODELING

In this work, we use predictive models that reducing the turnaround time of software development by new
execution time prediction methodology based on a statistic modeling method, called Multiple Linear
Regression. The performance model presented below can be used to predict throughput of a given software
system. The execution time of a program is mainly determined by its attributes such as the number of total
iterations of innermost loop, the total number of statements of innermost loop, the total number of function calls,
and the total number of branches. Multiple regression analysis is a statistical technique for investigating and
modeling the relationship between two or more independent variables and a dependent variable by a linear
equation with a set of observations. In this model, we have n observations y=yl1,...,yn called the response
variables and xi=xi,1,...,xi,p for i=1..n that are predictor or regressor variables. very value of the independent
variable x is associated with a value of the dependent variable y. Formally, given n bservations, the model for

multiple linear regression of p independent variables is
. o C e . .
yi =a0 -I-E_‘i-:l ajxji + ei fori=12,..n

and

P

uy = a0 +Zj-=1 axj is the so called population regression line. There have been different approaches to

estimate regression model (to estimate b0, bl... bp). The most popular one is leastsquares modeling, in which
the best-fitting line for the observed data is calculated by minimizing the sum of the squares of the vertical
variations from each data point to the line. Because the variations are first squared, then summed, there are no
cancellations between positive and negative values. The least squares estimating b0, bl ... bp are usually

computed by statistical software, such as IBM SPSS.
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The estimated regression model is also referred to as the fitted model. The observations, yi, may be different
from the fitted values zi = b0+ Eif:i bixij obtained from this model. The difference between these two values is
the variation, vi = yi - zi.

The simple way to predict the execution time is using TNinner * Linner, where TNinner is the number of total
iterations of innermost loop and Linner is the total number of statements of the source code of the innermost
loop. However, we observed that the errors of the predicted results are quite large. Thus, we propose a
comprehensive approach to predicting the execution time based on multiple linear regression method.

To construct the multiple line ar regression model, we use statistical tool and 16 attributes. Statistial tool like
IBM SPSS23(Statistical Package for the Social Sciences) is use to conduct multipal linear regression. The
current versions (2015) are officially named IBM SPSS Statistics. SPSS generates a multiple variable linear

equation as shown below:
Ypredicted = b0+ XF_, bjXj

Where,

Ypredicted =Dependent variable

X1, X2, ..Xp=Independent variable

b0, bl, b2,... bp =Coefficients generated by SPSS.

If the range of attributes are large,then prediction error occur. To overcome this problem we use RT(Repeating
time) variable. It shrink the range of execution time and obtain better prediction accuracy. we run each of them
RT time to obtain adjusted execution time. SPSS is used to conduct multiple linear regression, which gives best
RT each sample in learning set.As a result, average relative error reduced to minimum.

APETK is the Adjusted Predicted Execution Time for the k-th sample in the testing set. Following equation can
be use to predict APETi the Adjusted Predicted Execution Time for the i-th sample in the learning set.

APETi = (b0 + Z}_, bjXji) + bRTRTI

The Predicted Execution Time can be calculated by following equation.
PETk = APETKk / RTk
APETI, PETk and RTK is an important factor that can be determined by using the product of TNinner * Linner

and some heuristics. RTtesting is the set of RTk of all samples in the testing set, which comes from the

analytical model. Some samples’ RTk will be heuristically adjusted later.
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I11.LEARNING SET AND TESTING SETS FOR MULTIPLE LINEAR REGRESSION

We used gprof, a popular profiling tool in UNIX to select eight most frequent executed kernel samples in PHY

benchmark to form the testingset for performance prediction. We gather 16 static attributes from the source code

of the learning and testing sets as shown in Table 2. Below is the list

Table 1 Attributes of Learning set and Testing set
Attriburtes
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IV.RELATED WORK

There have been numerous works done in the area of performance modelling. [1] use regression models to
predict performance and power usage of the applications found in the SPECjbb and SPEC2000 benchmarks. As
in the previous reference, the data points are created using simulations. Kahn et al. [10]this paper described the
use of model trees for performance analysis. [3,4, 5] gives idea about predict the performance of source code
running on different hardware. [8] proposes cross-architecture performance prediction. It is a machine learning
based technique using both static and dynamic attributes from many programs from some benchmarks and
learning set of different input data from telecommunication group of EEMBC benchmark [6] and eight samples
from SMV benchmark [7]. [11] have presented an analytical approach to the design space exploration of caches

that avoids exhaustive simulation.

V.CONCLUSION

In this work, we use predictive model to predict the performance. which uses a comprehensive method that
combines analytical modeling and statistical approach. We use the multiple linear regression method with the
static attributes at source code level with statistical tool SPSS23 to predict the execution time of some typical
DSP functions. Another technique that can be used for Performance Modeling will be using Software
Simulation. Some simulation software products are available as COTS (commercial-off-the-shelf) products.
These are licensed, so prediction accuracy comes at a cost and hence the adoption is slower by the
organizations. As a result, these models will reduce turnaround time and development cost. Also provide
reducing the turnaround time after the modification of the source code due to changes in problem specification.

Predictions are more accurate for systems that are tuned for performance and scalability.
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