## EFFECT ON SEED GERMINATION AND SEEDLING VIGOUR BY SEED BORNE FUNGI OF PEA

## (PISUM SATIVUM L.)

### Imtiyaz Ahmad wani<sup>1</sup>, Khursheed aalum<sup>2</sup>

<sup>1,2</sup>PhD Research scholar Govt. M.V.M College Bhopal (India)

#### ABSTRACT

The present investigation was carried out to study the effect on seed germination and seedling vigour by seed borne fungi of pea (Pisum sativum L.).During the present study different culture filtrate effects of seed borne fungi showed reduction in seed germination and seedling vigour. The percent inhibition in germination was maximum with the culture filtrate of Fusarium solani (93.46%) and the minimum percent inhibition was in case of Aspergillus and pencillum spp. The reduction in plumule length was minimum in culture filtrate of A. flavus. The decrease in plumule length (mm) was maximum in case of culture filtrate of R.solani (11.01) and F. moniliforme (10.33) as compared to control. Root growth in Pisium sativum L .was sensitive to culture filtrate of pathogenic fungi. All filtrates reduced root length with variable phytotoxic potential among them significantly. The minimum reduction in radicle length was recorded with culture filtrate of F. oxysporum (9.11mm) as compared to control (67.53mm). The seedling vigour is less affected by A. flavus and pencillum spp.

Key words: - Culture filtrate, Plumule length, Pisum sativum L, Radicle length, Seed germination.

#### I. INTRODUCTION

Pea (*Pisum sativum* L.) is an important legume crop widely cultivated throughout the world .It belongs to family Leguminoaceae and sub family Papilionaceae .Pea appears to have originated in western part of Asia and the Eastern Mediterranean .Being a cool season crop it is extensively grown in temperate zone but restricted to cooler altitudes in the tropics and winter season in subtropics. One of the major constraints in the pea production is the attack of various diseases at different stages of growth including seed-borne disease. Micro-organism *viz* fungi, bacteria and actinomycetes are associated with the seeds during storage affecting their germination, causing rotting of seedlings and also cause disease in standing crops. The infected seeds serve as a primary source of inoculum .Many seed-borne pathogens get established in soil, it is difficult to eradicate them. Mycoflora present internally or externally causes considerable damage to crop .There are several factors influencing the pea yield and major being pathological diseases incited by fungi , bacteria ,viruses and nematodes .Some important diseases of pea are root rot ,foot rot ,seed rot ,anthracnose. There are number of mycoflora associated with pea seeds .Among them *Aspergillus* spp, *Alternaria* spp, *Cladosporium* spp

186 | Page

*Colletotrichum* spp *,Drechslera* pp *,Fusarium* spp *,Macrophomina* spp *,Penicillium* spp *,Rhizoctonia* spp *,Rhizopus* spp ,are responsible for reducing the yield of the crop. However, more study is needed to understand the role of seed mycoflora on crop health and their management by suitable seed.

#### **II. MATERIAL AND METHODS**

#### 2.1:-COLLECTION AND EXTRACTION OF THE SEED SAMPLES

The method described by the Neergard (1973) has been adopted for the collection of samples.

#### **2.1.1:-**Source of the seed samples

Seed samples of pea (*Pisum sativum* L.) were collected from fields of district Pulwama of Jammu and Kashmir where pea is generally cultivated and stored. Seeds were collected during the months of May to July in two years 2016-2017 randomly. After collection sun drying pods of pea (*Pisum sativum* L.) were beaten manually to extract the seeds. The composite samples were made by mixing individual samples together. The extracted seeds were carried out in cloth bags and stored in a refrigerator at suitable temperature for further studies. A sample of 400 seeds was drawn from working sample of seed lots of pea (*Pisum sativum* L.) from each place. (Anon.1993) And the seed borne fungi were isolated by Blotter method and agar plate method .The experiment was conducted at M.V.M College Bhopal .Details of the seed samples with sample code no. is given below in table 1.

| District | Place of collection | Location code no. |
|----------|---------------------|-------------------|
| Pulwama  | Chewakalan          | L1                |
|          | Dadoora             | L2                |
|          | Frasipora           | L3                |
|          | Gusoo               | L4                |
|          | Looswani            | L5                |
|          | Mitrigam            | L6                |
|          | Murran              | L7                |
|          | Rahmoo              | L8                |
|          | Wahibug             | L9                |
|          | Zagigam             | L10               |
|          | Kachipora           | L11               |
|          | Putrigam            | L12               |

#### Table 1.District and location of seed sample collection.

187 | Page

#### **III.PATHOGENCITY**

The fungi isolated were tested for their effect on seeds and seedlings.

#### 3.1:-Preparation of fungal suspension (inoculum)

The pathogenic fungi isolated were multiplied by cultivating their culture on Potato dextrose agar (PDA) as medium in petriplates (10cm) at  $25\pm2^{0}$ C for 20 days in an incubator with 12 hours of alternate light and dark arrangement. The fungus colonies were ruffled along with agar and crushed to form a paste and diluted in 250 mL of sterilized distilled water were added to make a fungal suspension for inoculation of seeds. The spores / mL were counted by haemocytometer.

# **3.2:-Effect and determination of pathogenic fungi on seed germination and seedling vigour**

The effect of pathogenic fungi on seed germination and seedling vigour were evaluated by obtaining culture filtrates. The different fungal suspensions were filtrated through Whatman filter paper no 4 and the filtrate were heated at  $100^{\circ}$ C for 2-3 minutes to inactivate the enzyme. In the culture filtrate the seeds were soaked separately for 12 hours .Ten seeds were placed in each petriplates at  $25\pm2^{\circ}$ C.The experiment were run in four replications (set of 100 seeds as replicate) with completely randomized design arrangement. Data on seed germination, radical and plumule length were counted and were statically analyzed by ANOVA followed DMR test.

#### **IV.RESULTS AND DISCUSSION**

The different culture filtrate effects of seed borne fungi caused reduction in seed germination and seedling vigour. The percent inhibition in germination was maximum with the culture filtrate of *Fusarium solani* (93.46%) followed by *F. moniliforme* (89.60%), *F. oxysporum* (85.37%) and *R.solani* (72.38%) and the minimum percent inhibition was in case of *Aspergillus* and *pencillum* spp. Shankar *et al*,(1995) studied effect of soaking of *Vigna radiate* L. seeds for six hours in culture filtrates of *Aspergillus niger* and found that it caused reduction in seed germination.

The Culture filtrate of all the test fungi suppressed seedling vigour of *Pisium sativum* L. significantly. However, the variable phytotoxic effect of the different culture filtrate was evident. The reduction in plumule length was minimum in culture filtrate of *A. flavus*. The decrease in plumule length (mm) was maximum in case of culture filtrate of *R. solani* (10.97) and *F. moniliforme* (10.33) as compared to control. .Root growth in *Pisium sativum* L. was sensitive to culture filtrate of pathogenic fungi. All filtrates reduced root length with variable phytotoxic potential among them significantly. The minimum reduction in radicle length was recorded with culture filtrate of *F. oxysporum* (9.11mm) followed by *F. solani* (11.01mm), *R.solani* (11.01mm) as compared to control (67.53mm). The seedling vigour is less affected by *A. flavus* and *pencillum* spp.(Fig 1) The inhibition of radicle and plumule growth especially by seeds applied with high inoculum density led to lower germination percentage of up to 50 % (Linn and Ehret ,1991 ;Gilbert and Tekauz 1995 ;Menzies *et al.* 

| Fungi inoculated        | Seed germination | Inhibition over | Seedling vigour |                |
|-------------------------|------------------|-----------------|-----------------|----------------|
|                         |                  | control         |                 |                |
|                         |                  |                 | Radicle length  | Plumule length |
|                         |                  |                 | (mm)            | (mm)           |
| Alternaria alternata    | 44.75c*          | 41.86ef         | 26.45i          | 30.23f         |
| Aspergillus flavus      | 62.00c           | 19.46g          | 64.38a          | 54.38b         |
| Aspergillus niger       | 65.25b           | 14.97g          | 34.59d          | 50.90c         |
| Curvularia lunata       | 34.50g           | 55.18de         | 33.92de         | 38.35de        |
| Aspergillus tameri      | 42.50f           | 44.79ef         | 30.41e          | 36.45e         |
| Aspergillus terrus      | 51.00d           | 33.75fg         | 41.57c          | 39.98d         |
| Fusarium oxysporum      | 11.25i           | 85.37abc        | 9.11gh          | 13.99h         |
| Fusarium moniliforme    | 8.00j            | 89.60ab         | 12.11gh         | 10.33i         |
| Fusarium roseum         | 25.50h           | 66.86cd         | 13.03g          | 17.22g         |
| Fusarium solani         | 5.00k            | 93.46a          | 11.01gh         | 14.01h         |
| Rhizoctonia solani      | 22.001           | 72.38bcd        | 10.97 gh        | 11.01 i        |
| Penicillium sp.         | 63.25c           | 17.19g          | 60.28b          | 34.38de        |
| Macrophomina phaseolina | 52.50d           | 31.19fg         | 45.15c          | 56.62b         |
| Control                 | 77.00a           |                 | 67.53a          | 74.34a         |
| DMR value (P=0.05)      | 1.85             | 19.34           | 3.84            | 3.01           |

#### Table 2:- Effect and determination of pathogenic fungi on seedling vigour

\*Mean sharing the same letter are not significant according to (DMR) Test. Data are means of four replication

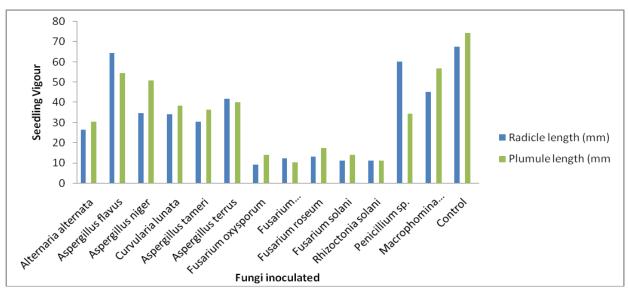



Fig 1:- Effect of inoculated pathogenic fungi on radicle and plumule length .

#### V.ANALYSIS OF VARIANCE FOR THE EFFECT AND DETERMINATION OF PATHOGENIC FUNGI ON SEEDLING VIGOUR

#### Analysis of variance for percent germination of seed

| S.O.V | D.F. | S.S.      | M.S      | F Value   |
|-------|------|-----------|----------|-----------|
| Fungi | 13   | 32320.357 | 2486.181 | 470.699** |
| Error | 42   | 71.000    | 1.690    |           |
| Total | 55   | 32391.357 |          |           |

#### Analysis of variance for percent inhibition /control

| S.O.V | D.F. | S.S.      | M.S      | F Value  |
|-------|------|-----------|----------|----------|
| Fungi | 12   | 37694.403 | 3141.200 | 17.172** |
| Error | 39   | 7134.023  | 182.924  |          |
| Total | 51   | 44828.425 |          |          |

#### Analysis of variance for plumule length

| S.O.V | D.F. | S.S.      | M.S      | F Value   |
|-------|------|-----------|----------|-----------|
| Fungi | 13   | 21945.977 | 1688.152 | 377.775** |
| Error | 42   | 187.684   | 4.469    |           |
| Total | 55   | 22133.661 |          |           |

#### Analysis of variance for radicle length

| S.O.V | D.F. | S.S.      | M.S      | F. Value  |
|-------|------|-----------|----------|-----------|
| Fungi | 13   | 22827.382 | 1755.952 | 241.386** |
| Error | 42   | 305.527   | 7.274    |           |
| Total | 55   | 23132.909 |          |           |

\*\*=Highly significant (P<0.01)

#### **VI.ACKNOWLEGMENT**

The authors are grateful to the Head of Department of Botany M.V.M College Bhopal for providing necessary laboratory facilities to work .

#### REFERENCES

- [1.] Neergard Paul. Detection of seed-borne pathogens by culture tests *.Seed science. and technology* . 1973, *1:217-254*.
- [2.] Anonymous. International rules for seed testing. Seed Sci. and Tech. 1993, 13: 299-355.
- [3.] Shankar V and Rao, CGP .Effect of culture filtrates of some selected seed mycoflora of green gram on seed germination and seedling growth *.Journal of Ecobiology 7(3)* 1995,225-230
- [4.] Linn W C, Ehret D L. Nutrient concentration and fruit thinning effect on shelf life of long English cucumber .*Hortsci* 1991, 26:1299-1300.

- [5.] Gilbert J, Tekauz A 1995 .Effect of *Phaeosphaeria nodorum* –induced seed shriveling on subsequent wheat emergence and plant growth .*Euphytica* 82:9-16.
- [6.] Menzies J G, Ehret D L, Stan S .Effect of inoculum density of *Phythiumaphaniddermatum* on the growth and yield of cucumber plants growing in recirculating nutrient film culture *Canadian..Journal of Plant Pathology* 1996. 18:50-54
- [7.] Chilkuri A and Giri G K. Detection and transmission of seed borne mycoflora in green gram and effect of different fungicides .*International .Journal of Advance .Researches*, 2(5): 2014, 1182-1186.
- [8.] De Tempe J .Testing cereal seeds for Fusarium infections in the Netherlands .*Proc Int. Seed Testing Association*, 1970,35:193-203.
- [9.] Demirci E, Eken C and Kantar F. Pathogenicity of wilt and root rot pathogens of chickpea cv.Aziziye-94 *.Journal of Turkish Phytopathology 28(1/2)* 1999:25-32.
- [10.] Dwivedi S.N and Shukla T.N., Mycoflora of gram seed in different agro climate regions and their pathology. *Indian Phytopathology*, 1990, 43: 98-101.
- [11.] Gngaokar M Narayan and Kshirsagar D Ayodhya., Study of seed borne fungi on different legumes, *Trends in life science* 2013, *Volume 2 Issue 1*.
- [12.] Javaid A and Anjum T .Fungi associated with seeds of some economically important crops in Pakistan .*PJST* 2006, *1:8-9*.
- [13.] Kumar D and Singh T. Fungi causing seed and seedling disease in pigeonpea. *Journal Phytopathology Research* 2001, *14* (1):39-42.