

383 | P a g e

Heavyweight vs. Lightweight Methodologies: Key

Strategies for Development

Prabha Singh
1
, Shubham Srivastava

2
, Chaynika Srivastava

3
, Aditya Singh

4

Computer Science & Engineering Department, ITM, GIDA, Gorakhpur, Uttar Pradesh, (India)

ABSTRACT

A software development methodology refers to the framework that is used to plan, manage and control the

process of developing a Software Product. The main objective of this paper is to represent different models of

software development and different aspects of each model to help the developers to select specific model at

specific situation depending on customer demand. There are two software development methodologies used:

Heavyweight and Lightweight. Heavyweight methodologies, also considered as the traditional way to develop

software, claim their support to comprehensive planning, detailed documentation, and expansive design. The

lightweight methodologies have gained significant attention from the software engineering community in the last

few years. Unlike traditional methods, these methodologies employ short iterative cycles, and rely on tacit

knowledge within a team as opposed to documentation. This survey represents the strengths and weakness

between the two opposing methodologies and provided the challenges associated with implementing both

processes in the Software Industry.

Keywords: Heavyweight development model, Lightweight development model, Software

Development Life Cycle,

I. INTRODUCTION

Software Development Life Cycle (SDLC)
[5]

 is a measure to check

 Whether the software that is built is as per the customers’ requirements

 Work efficiently and effectively

 And are less expensive to build and cost – effective to upgrade.

SDLC provides a series of steps to be followed to design and develop a software product efficiently. SDLC

framework includes the following steps:

Fig.1. SDLC Framework

384 | P a g e

SDLC is divided into two categories; heavyweight and lightweight. Software industry has an option to choose

suitable methodology/process model for its current needs to provide solutions to give problems. In software

development, “lightweight” methodologies are gaining ground on more traditional “heavyweight”

methodologies. Both have their advantages and disadvantages. The main difference is that the highly structured

“heavyweight” methodology used by the shuttle designers is predictable, while the flexible “lightweight”

methodology used to develop cutting-edge software solutions is not. These solutions use new technologies and

designs Heavyweight Methodologies: There are various heavyweight development models or methodologies.

They are as follows:

II.WATERFALL MODEL

Strengths:

 Easy to manage due to the rigidity of the model, because each phase has specific

 Reinforces good habits: define-before-design, design-before-code.

Weakness:

 Unrealistic to expect accurate requirements so early in project.

 Software is delivered late in project, delays discovery of serious errors.

1. Spiral Model
[4]

:

Strengths:

 High amount of risk analysis hence, avoidance of Risk is enhanced.

 Software is produced early in the software life cycle.

 The model makes use of techniques like reuse, prototyping.

Weakness:

 The model is not suitable for small projects as cost of risk analysis may exceed the actual cost of the project.

 Different persons involved in the project may find it complex to use.

III. ITERATIVE MODEL
[3]

Strengths:

 In iterative model we are building and improving the product step by step. Hence we can track the defects at

early stages. This avoids the downward flow of the defects.

 In iterative model we can only create a high-level design of the application and we can get the reliable user

feedback.

Weakness:

 Each phase of iteration is rigid with no overlaps.

385 | P a g e

 Costly system architecture or design issues may arise requirements are gathered up front for the entire

lifecycle

IV.INCREMENTAL MODEL
[3]

:

Strengths:

 Easier to test and debug during a smaller iteration.

 Easier to manage risk because risky pieces are identified and handled during its iteration.

Weakness:

 Total cost is higher than waterfall.

 Requires heavy documentation. Follows a defined set of processes, defines increments based on function and

feature dependencies.

Lightweight Methodologies: There are various lightweight development models or methodologies. They are

as follows:

1. Extreme Programming(XP):

Strengths:

 Produces good team cohesion.

 Emphasizes final product.

Weakness:

 Programming pairs is costly.

 Test case construction is a difficult and specialized skill.

2 .Feature Driven Development (FDD)
[12]

:

Strengths:

 FDD used for larger size projects and obtain repeatable success.

 This model has just enough detail to form a good shared understanding, vocabulary and conceptual

framework for the project.

Weakness:

 No written documentation provided to clients in this methodology so, they are not able to get a proof for their

own software.

 FDD depends on user requirements; changes in user requirement during project development can affect

project progress.

 3. Rational Unified Process (RUP):

Strengths:

386 | P a g e

 It is proactively able to resolve the project risks that are associated with the clients evolving requirements for

careful changes and request management.

 Very less need for integration as the process of integration goes on throughout the development process.

Weakness:

 Integration throughout the process of software development causes more issues during the stages of testing.

 This process is too complex therefore it is very hard to understand.

HH. Comparisons between Heavyweight and Lightweight Strategies:

Table I. Comparision between Heavyweight and Lightweight

Strategies
[13]

Sr. Parameters Heavyweight Lightweight

 Strategies Strategies

1 Budget High Budget Low Budgets

 allocation is are required

 done

2 Team size Large team size Small team size

 / Creative team

3

Project

criticality Extremely Low Criticality

 Critical

4

Technology

used Process People Oriented

 Oriented

5

Documentati

on Explicit Face to face

 knowledge is communication

 required is possible

6 Training Heavy training As the

 is required as development

 the software is team and the

 delivered once it customer are

 is totally ready interacting with

 each other less

387 | P a g e

 training is

 required

7 Best More emphasis Face – to – face

practices/less

ons on process conversations

 learned hence no between the

 communication client and the

 team

Tools and

techniques

Tool and techniques

 like waterfall

model is used

 new like XP, FDD

are used

8

9

Existing

processes

Water fall

Model XP, FDD

10 Software Predictive

Adaptive

11 Testing

Testing happens

only after the

completion of

the

development.

Testing team

work in parallel

with the

development

team which

helps to find the

defect as soon

as possible.

12. delivery Usually deadline not met Delivered at deadline

V.CONCLUSION

It will be inappropriate to say that size is the only criteria which can be helping us in choosing the right

methodology. Different methodologies are appropriate in various situations. Many a time Heavyweight

methodologies were considered appropriate as they were disciplined. However, lightweight methodologies have

a different aspect altogether. They compromise between no process and many processes. These new methods

managed the projects which are having short time box, and uncertain and are dynamic to change. The

lightweight methodologies made the work of the developers easier in terms of cost and time. The developers

388 | P a g e

because of these methodologies were able to visualize their end product clearly. Lightweight methodologies

made the developers re – examine the heavyweight strategies in respect to requirement analysis and process

improvement.

REFERENCES

[1] L. Jiang and A. Eberlein,” Towards A Framework for Understanding the Relationships between Classical

Software Engineering and Agile Methodologies“, ACM, 2008.

[2] Basili, V. R. & Reiter, “A Controlled Experiment Quantitatively Comparing Software Development

Approaches”. IEEE Transactions on Software Engineering, Vol. 7, 3 (3), pp. 299-320, 1981.

[3] Larman, C. & Basili, V. R. “Iterative and Incremental

[4] Development: A Brief History”. IEEE Software, Vol. 20, pp.47-56,2003.

[5] B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE Computer, May 1998.

[6] Davis, A, Bersoff, E, Comer, E, “A Strategy for Comparing Alternative Software Development Life Cycle

Models”, IEEE Transactions on Software Engineering, vol.14, iss.10, pp.1453-1461, 1988.

[7] M. Sami Abd EI-Satar” Software Development Life Cycle Models and Methodologies”, 2012.

[8] E. Mnkandla, "About Software Engineering Frameworks and Methodologies", IEEE AFRICON 2009.

[9] Steve Easterbrook, "Software Lifecycles", University of Toronto Department of Computer Science, 2001.

[10] Kaiser, G., P. Feiler, and S. Popovich, Intelligent Assistance for Software Development and Maintenance,

IEEE Software , 5, 3, 1988.

[11] A Comparison between Five Models Of Software Engineering IJCSI International Journal of Computer

Science Issues, Vol. 7, Issue 5, September 2010 ISSN (Online): 1694-0814.

[12] T Bhuvaneswari and Prabaharan S.(2013) “A Survey on Software development life cycle model”, Journal

of Computer Science and Information Technology, Vol2 (5), 263-265.

[13] Nabil Mohammed Ali Munassar Ali and Govardhan A (2010) “A Comparison between Five Models of

Software Engineering” International Journal of Computer Science, Vol. 7(5), 98-100.

