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I. INTRODUCTION AND MATHEMATICAL PRELIMINARIES
T. Gnana Bhaskar and V. Lakshmikantham [9] introduced the concept of coupled fixed
point of mapping F : X x X — X. Lakshmikantham V. and Ciri¢ L. [13] introduced coupled
coincidence point. Then results on existence of coupled fixed point and coupled coincidence
points appeared in many papers [1, 2| @ 5] 8| [10, 13 15 17, 18] Y] . Choudhury
et al.[7l introduced concept of coupling and proved the existence and uniqueness of strong
coupled fixed point for couplings using Kannan type contractions for complete metric spaces.
We generalize Choudhury result and prove coupled coincidence point in metric spaces. Finally
we give an example to support our result.

Definition 1.1. (Coupled Fixed Point) [9]. An element (z,y) € X x X, where X is
any non-empty set, is called a coupled fixed point of the mapping F : X x X — X if

Flr,y) ==z and F(y,z)=y.

Definition 1.2. (Strong Coupled Fixed Point) [7]. An element (z,y) € X x X, where X is
any non-empty set, is called a strong coupled fixed point of the mapping F' : X x X — X if
(x,y) 1s coupled fixed point and = = y; that is if F(z,z) = =.

Definition 1.3. (Coupled Banach Contraction Mapping) [9]. Let (X.d) be a metric space.
A mapping F : X x X — X is called coupled Banach contraction if there exists k € (0, 1) s.t.

YV (z,y),(u,v) € X x X, the following inequality is satisfied:
k
d(F(z,y), F(u,v)) < 5ld(z,u) +d(y, v)].

Definition 1.4. (Cyclic Mapping) [II]. Let A and B be two non-empty subsets of a given
set X. Any function f: X — X is said to be cyclic (with respect to A and B) if

f(A)YC B and f(B)C A.

Definition 1.5. (Coupling) [7]. Let (X, d) be a metric space and A and B be two non-empty
subsets of X. Then a function F' : X x X — X 1s said to be a coupling with respect to
Aand B if

F(z,y) € B and F(y,z) € A
whenever r € A and y € B.
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Definition 1.6. (Coupled Coincidence Point of F and g) [13]. An element (z.y) € X x X
is called a coupled coincidence point of the mappings F': X x X — X and g : X — X if

Flz,y) = g(xr) and F(y,z) = g(y).

Definition 1.7. [12]. A function v : [0, 00) — [0, 00) is called an altering distance function,
if the following properties are satisfied:
(1) 7/ i1s monotone increasing and continuous,

(i) (t) = 0 iff t = 0.

Lemma 1.8. [3]. Let ¢ € ® and {u,} be a given sequence such that u, — 07 as n — oc.
Then ¢(u,) — 0" as n — oo. Also &(0) = 0.

Where @ is set of all functions ¢ : [0, 00) — [0, co) satisfying :

(1) ¢ is non-decreasing,

() &(t) <t forall t=0,

(111) TEE_ o(r) <t forall t=0.

Definition 1.9. [3]. Let A and B be two non-empty subsets of a partial metric space (X, p).
A coupling F : X? — X is said a ¢-contraction type coupling with respect to A and B if
there exists ¢ € ¢ such that

p(F(I' y}: F(u L'” {_:| q')(-m.a.r {p(l‘, U-}, P(y 'L'] }]\

for any z,v € A and y,u € B.

Theorem 1.10. [3]. Let A and B be two non-empty closed subsets of a complete partial
metric space (X,p). Let F: X? - X be a ¢-contraction type coupling with respect to A and
B. Then AN B # 0 and F has a unique strong coupled fixed point in AN B.

Il. MAIN RESULT

Our main result is divided into two subsections. In the first subsection we introduce SCC-
Map, ¢-contraction type T-coupling (with respect to A and B) and prove existence theorem
of coupled coincidence point.

2.1 Coupled Coincidence Point of --Contraction Type T-Coupling in Metric Spaces.

Before proving the main theorem of this subsection we introduce some definitions.

Definition 2.1.1. (SCC-Map). Let A and B be any two non-empty subsets of a met-
ric space (X,d) and T : X — X be a self map on X. Then T is said to be SCC' — map (with
respect to A and B), if

(1) T(A) C Aand T(B) C B,

(i1) T(A) and T'(B) are closed in X.

Remark 2.1.2. The identity map 1s not SCC — Map in general. Identity map 1s SCC — Map
(with respect to A and B) whenever A and B are closed subsets of X, i.e. Identity map can't
be considered as SCC — Map with respect to open sets.

Definition 2.1.3. (¢-Contraction Type T-Coupling). Let A and B be any two non-empty
subsets of metric space (X,d) and T : X — X 158 SCC — Map on X (with respect to A and
B). Then a coupling F : X x X — X is said to be ¢-Contraction Type T-Coupling (with
respect to A and B), if
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d(F(z,y), F(u,v)) < ¢(maz{d(Tz, Tu),d(Ty,Tv)})
for any z,v € A and y,u € B and ¢ € ® defined in Lemma 1.8.
Note 2.1.4. If A and B are two non-empty subsets of a metric space (X.d) and F : X x X —

X is a coupling with respect to A and B. Then by definition of coupling for a € Aand b € B,
we have F(a,b) € B and F(b,a) € A.

Now let (a,b) be the coupled fixed point of F, then F(a,b) = a and F(b,a) = b. But in
general this is absurd because F'(a,b) € B and a € A. Similarly F(b,a) € A and b€ B. This
1s only possible for a,be AN B.

The most important fact to be noted is that for any coupling F : X x X — X (with
respect to A and B), where A and B be any two non-empty subsets of metric space (X, d), if
we Investigate for coupled fixed point (x,y) in product space A x B, then we should directly
investigate in product subspace (AN B) x (AN B). Similarly for strong coupled fixed point,

we should investigate it in A M B.

Theorem 2.1.5. Let A and B be any two complete subspaces of a metric space (X, d)
and T : X — X is SCC — Map on X (wort. Aand B). Let F: X x X — X be a ¢
contraction type T-coupling (with respect to A and B), then

(1) T(A)NT(B) # 0,

(i1) F and T have atleast one coupled coincidence point in A x B.

Proof. Since F is ¢-contractive type T-coupling (with respect to A and B), we have
d(F(z,y), F(u,v)) < ¢(maz{d(Tx,Tu),d(Ty,Tv)}) (1)

where z,v € A and yu € B and ¢ € ®.

As A and B are non-empty subsets of X and F is ¢-contraction type T-coupling ( with respect
to A and B), then for zp € A and yo € B we define sequences {z,} and {y,} in A and B
respectively, such that

T:rﬂ-i-l = F{ymf‘n) and Tyﬂ-i-l = F(I‘n-. yn]- (2]

We claim Tz, #£ Ty, and Ty, #£ T ¥V on.
If possible suppose for some n, Tx, = Ty, and Ty, = Tz, 1. Then by using (2). we have

Trn =Tyns1 = Flzn,yn) and Tyn = Trni1r = Fyn, zn).

Which shows that (x,, ¥,) 1s a coupled coincidence point of F and T', so we are done in this
case. Thus we assume

Tzyp # Tyn1 and Typ #Topyy ¥V n.
Now we define a sequence { Dy} by

Dn - ma“r{d{Tﬂ:m Tyn+1) ¥ d(Tyn-. .T-rﬂ+1j] } (3j
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Then
D,=0 ¥ n. (4)
Now by using (1) and (2), we get
d(Tzp, Tynt1) = d(F(yn-1,Tn-1), F(Tn,yn))
< ¢(mazx{d(Tyn—1,Tzn),d(Txn_1,Tyn)}) (5)
and
d(Tyn, Tzns1) = d(F(zn-1,Yn-1), F(Yn, n))
< é('nlax{d(T-rn—l 3 .Tyn)-. d(Tyﬂ—la TIR)}) (Gj
Using &(t) < ¢ ¥ ¢ = 0, then from (3), (4), (5) and (6), we have
0 < mﬂ'r{d{.TIn-. 'TyrHl }: d('Tym TIR+1)}
= ‘i"{inal‘{d(TIn—l 3 -T'yn)a d[:Tyﬂ—l 1 T‘In) }) (7)

= Dn—l-

Thus D,, < D, ¥ n. This show that {1, } is monotonic decreasing sequence of non-negative
real numbers, therefore 3 s = 0, s.t.

lim D, = lim mar{d(Ten, Tyni1), d(Tyn, TTni1)} = s (8)

n—r+o0 n—+o00
Suppose s > 0, letting n —+ +o0 in (7), using (4) and Lemma 1.8, we have

D<s < lim ¢(max{d(Tzy 1, Ty,), dTyy, 1, Tz,)})

—  n—too

= Lm ¢(t) < s.

t—+a™

Which 15 a contradiction, therefore s = 0.

So
111_-'1_1 ma-r-{d{T:rm Tyn+lj_~ d(Tyn-. T-Tﬂ+1)} =0.
Le.
111_;1_1 d(TImTyn+1] =0 and llT_'I_l d(Tyn-.-TIn+lj =0. (gj
Le.
hT_P d(Txy, Tyns1) = 0 and 111_;[_‘1 d(Typ, Tpy) = 0. (9)

Now we prove hm d(Tz,, Ty,) = 0.

Let us define a ;;qﬁence {R.} by R, = d(Tx,, Ty,). If R, = 0 for some ny, then Tz, = Tyy,
and so Trpyr1 = Tyng+1, by induction we have

d(Txn, Tyn) =0¥ n = ng. Thus lim d(Tzy, Tyn) = 0.

Now we assume Ry, >0 ¥V n, th;;cgy using (1),(2) and definition of ¢, we have
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R‘]’l - d(TﬂfmTyﬂ) d(F(y‘ﬁ-—l_\IR—I)IF(IH—IEy]’!—I)

< d(maz{d(Tyn—1,Tzn1),d(TTn1,Tyn-1)})
= o(d(Trp1,Tyn-1))

= ¢(Rn1)

< R, 4.

Thus {R,} 1s a monotonic decreasing sequence of non-negative real numbers. Therefore
2r =0 st

lim R, =r".

n—Foo

Assume r > 0 and proceeding similarly by using lim+ @(z) <m ¥V m =0 as above we will

obtan a contradiction, so r = 0, 1.e.
lim d(Tx,, Ty,) = 0. (10)

Using triangular inequality, (9) and (10), we have

hm d(TIm TIﬂ-i-l:] < lim_ [d(TTne Tyn+1) + d{T'yn+1-. T-Tn+1]] =0. (l 1)
g}l”n;lc d(Tyn, Tyn+1) = JLn;o[d(Tyn-_ T-Tn+l] + d(TIn+le T'yn+1)] =0. [:12]

Now we show that {Tz,} and {Ty.} are Cauchy sequences in T(A) and T(B) respectively.
Assume either {T'z,} or {Ty,} is not a Cauchy sequence, Le.

hm d(Tr,,Tr,)#0 or hm  d(Ty, Ty,) #£0.

7, M—+o0 7, +00

Then 3 £ > 0, for which we can find subsequences of integers {m(k)} and {n(k)} with
n(k) > m(k) = k, s.t.

maz{d(Tzm@), Tonm)): d(TYmiy, Tynw)) } = &. (13)

Further corresponding to m(k) we can choose n(k) in such a way that it is smallest integer

with n(k) = m(k) and satisfy (13), then

maz{d(TTmy, TTn)-1)s AT Ymeys Tngy-1)} < & (14)

Now by using triangular inequality, (1) and (2), we have

A Txniy, Tempy) < dTzn@), Tyng) + d(Tyny, TTmz)+1)
+d(TTmk)+1, TTmek))
= d(Tzaw). Tyn)) + A(TTm)+1, TTmk))
+d(F(Tngk)—1: Ynky—1)s F(Ymiys Tmir )
< d(Tzawy, Tynwy) + AT Tmpy 1, TTmiy)
+o(maz{d(TTn@) 1, Tym(i)) d(Tynw)-1, TTm) })
= d(Tznwy Tyngy) + AT Tmp)11, TTmi)
+o(maz{d(Tzm), Tynik)—1)s AT Ymeky, TZn(i)—1)})-
(15)
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Similarly by using triangular mequality, (1) and (2), we can show that

ATy Tmry) < A(Tyny, Trngy) + AT Ympy 11, TYmery)
+o(maz{d(Tyme), Tram)—1): AT Zmy, T —1)})-

(16)
From (13), (15) and (16), we have
e < maz{d(Tzn@), Trmk)), d(Tynik), Tymx))}
< d(Txngy, Tynry) + maz{d(Tzpy i1, TEm) ) AT Ymky 15 TYmwy) }
+o(maz{d(Tzmy, Tynw)-1)> A(TYm(ky, Tagr)-1)})- (17)
By triangular imequality , we have
A(Tzmk), Tyn(ky-1) < d(Tzm(ky, Tym()) + A(TYmek), Tynik)-1)- (18)
d(Tym{kaTIn(k)—l) < d(Tym(kJ_\ T'Im(k}) + dfTImch:Tfn{kJ—l)- (19)
From (14), (18) and (19), we have
maz{d(Tzmy, TYner)-1)s AT Ymek), TTnky-1)}-
it d(TI‘m(k}: Tym(k}) + mﬂ-’»"{d(Tym{kJ,Tyn(k}—l], d(Tirm(k)-. T-’o"n(k}—lj}
< d(TZm), TYmry) + €. (20)
Since ¢ is non-decreasing, we have from (20)
d(maz{d(Tzm), Tynr)-1), A(TYmr), Toniry-1)}) < Hd(Tzmew), Tymny) + €). (21)
Now using (21) in (17), we get
g < d(TTuky, Tyny) + maz{d(TTmry+ 1, TZmk) ) A(TYmery 15, TYmeiy) }
+ (T Ty, TYmry) + ) (22)

Letting & — oo in (22) and using (10), (11), (12) and property (iii) of ¢ in Lemma 1.8, we
get

m
A

Al;n;c (ﬁ(d(TIm{;cJ, Tym{k]) +£)
AT xmey, Tymry) + €)

1111
AT T gy T Uiy ) et

< = (23)

Which is a contradiction. Thus {T'z,} and {Ty,} are Cauchy sequences in T(A) and T'(B)
respectively. But T(A) and T(B) are closed subsets of a complete subspaces A and B resp.
Hence {Tz,} and {Ty,} are convergent in T(A) and T(B) respectively.
So3 ueT(A) and v € T(B), s.t.

Tz, -u and Ty, —v. (24)

Using (10) in above, we get
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Therefore u = v € T(A) N T(B), thus T(A) N T(B) # 0. This proves part (i).
Now, as u € T(A) and v € T(B), therefore 3a€ A and b€ B, s.1.
u = T(a) and v = T(b). Using in (24), we get
Trn — T(a) and Ty, — T(b). (26)
Also from (25), we get
T(a) =T(b). (27)

Now using triangular mmequality, (1), (2), (26), (27) and Lemma 1.8, we get

d(T(a), F(a, b))

[/

d(T(G)i T:rn+1) + d('TIn+1.~ F(ﬂ'-. bj)
d[:T[:a')! T:L‘n+1) + d[:F[:'yﬂ! In] 3 F(a'! b])
d(T(a), Tzy1) + ¢(maz{d(Ty,.T(a)), d(Tz,, T(b))})

0 as n— oc.

LA

Thus from above, we have

F(a,b) =T(a). (28)
Again by using triangular inequality, (1), (2), (26), (27) and Lemma 1.8, we get

d(T(b), F(b, a))

[

d(T(b), Tyn+1) + d(Tyn 1, F (b, a))
= d(T(b), Tyn+1) + d(F(zn,yn), F(b,a))
d(T(b), Tyn+1) + ¢(max{d(Tz,.T(b)),d(Tyn, T(a))})

0 as n— oo

boIA

From above, we have

F(b,a) =T(b). (20)
Hence (28) and (29) shows that (a,b) € A x B is the coupled coincidence point of F' and T.

Corollary 2.1.6. It should be noted that the above condition also gives a symmetric point
of Fin A x B, 1.e. there exists a point (a,b) € A x B s.t. F(a,b) = F(b,a). This can be
easily see by using (27) in (28) and (29) of Theorem 2.1.5, we get F(a,b) = F(b, a).

Corollary 2.1.7. If we take T = [ (the identity map) and A and B the closed subsets,
then Theorem 2.1.5 will reduce to Theorem 1.10 by H.Aydi [3] for partial metric spaces not
necessary complete.

Proof : The proof can be easily verified by using (27) and (28) of Theorem 2.1.5 and the
fact that I is one-one map, so a = b and hence AN B # @ and F(a,a) = a.

Note 2.1.8. It should be noted that if T is one-one, then by the asssumption T(A) C A and
T(B) € B. we have T is identity map on A and B and uniqueness can be proved by Corollary
2.1.7.

Example 2.1.9. Let X = (—5,5) be the metric space with respect usual metric d on

X,1e d(zr,y)=|z—y|. Let A=[0,2] and B = [0, 4] be the complete subspaces of X. Let
us define F': X x X — X by
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2, 0<z,y<2
F(z,y) = {I' Y Y (30)
51, elsewhere.
Also we define T': X — X by
2, D<zx<2
Tz)=< " = = 31
(@ { A 31)
We define ¢ : [0, 00) — [0, 00) by
2, 0<t< i
¢(t) = {37 Vi (32)
b t = o51°

Clearly ¢ € @.
Now from (31), we have

T(A) = {2} C A and T(B) = {2.4} C B.

Also T(A) and T(B) are closed in A and B respectively. Thus T : X — X 1s SCC-Map (w.r.t.
A and B).

Now we will show F: X x X = X is coupling (w.r.t. A and B).

Let x € A and y € B. Here two cases will arise for y,

case(1): 0 <y <2, 1e y e A,

case(ll): 2 <y < 4.

For case (1) 1.e. z,y € A, by using (30), we have

F(r,y)=2€ B and F(y,z) =2 € A. Thus F is coupling (w.r.t. A and B) and we are done
in this case.

For case (i) i.e. € A and 2 < y < 4. by using (30), we have

r+y
F(z,y) =
(z,y) 51
l.e.
L o ray <t S F@yen
g <Fly sy =Flye
and
i«:F( :.r)-(l = F(y,z)e A
12 $E =7 ¥

Thus in both the cases we get F' is a coupling (w.r.t. A and B).

Now we show that F' is ¢-contraction type T-coupling (w.r.t. A and B).
Let z,v € A and y,u € B, three cases will arise for y, u,

case(i): when both y,u € A, ie. 0 <y,u<2.

case(il): when one is in A and other outside A.

case(1i1): when both y, u lie outside A, 1.e. 2 < y,u < 4.

For case(i),i.e. z,y,u, v € A, we have from (31)

Tz)=T(y) =T(u) =T(v) = 2.
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So, d(T(z),T(u)) = d(T(y),T(v)) =0,
thus

maz{d(T(x), T(u)),d(T(y),T(v))} = 0.

Using (32) in above, we get

¢(max{d(T(z),T(u)),d(T(y), T(v))}) = ¢(0) = 0.

Also for z,y,u,v € A, we have from (30)

F(I.\y) — F{u._-v) =2, = d’(F(I:y)! F(-u,v}} =0

Thus from (33) and (34), we get

d(F(z,y), F(u,v)) = ¢(maz{d(T(x), T(u)),d(T(y), T(v))}).

Hence we have proved in this case.

IJARSE
ISSN: 2319-8354

For case(il), i.e. z,v € A and either y or u € A. Without loss of generality we assume y € A

and u outside 4 1.e. 2 < u < 4,
thus for z,y,v € A and 2 < u < 4, we have from (31)

T(z)=T(y) =T(v) =2 and T(u)=4.

. so d(T(x),T(u))=2 and d(T(y),T(v))=0
thus

maz{d(T(z),T(u)),d(T(y),T(v))} = 2.

Using (32) in above, we get

47
ﬂ.

¢(maz{d(T(z), T(u)),d(T(y),T(v)}) = &(2) =

Also for z,y,v € A and 2 < u < 4, we have from (30)

. 1 1
F(z,y)=2 and vl < F(u,v) < 1
Therefore from (36), we have
1
d{F(I:y):F(u-. 'L'):] = (2 - Ej
_»
12
o
24

Thus from (35) and (37), we get

d(F(z,y), F(u,v)) < ¢(maz{d(T(z),T(u)),d(T(y), T(v))}).

Which proves case(i1).
For case(iil), i.e. z,v € A and 2 < y,u < 4., we have from (31)

T(x)=T(v) =2and T(y) = T(u) =4,

(37)
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50,
d(T(z), T(u)) = d(T(y), T(v)) = 2.
and
maz{d(T(z), T(u)),d(T(y),T(v))} = 2.

Using (32) in above, we get

o(maz{d(T(x),T(u)),d(T(y), T(v))}) = 6(2) =

Also for z,v € A and 2 < y,u < 4, we have from (30)

1 . 1 1 .
3 < F(x,y) < i and 13 < Flu,v) <
from (39), we have
d(F(z.y), Flu0) < (1 -1y = 1
S R T L

M

From (38) and (40), we have

e | =

IJARSE
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A7 -
ﬂ (32‘5]
(39)
(40)

d(F(z,y), F(u,v)) < d(maz{d(T(z), T(u)),d(T(y), T(v))}).

Thus in all the cases we have proved that F' is ¢-contraction type T-coupling (w.r.t. A and

B).

Hence all the assumptions of Theorem 2.1.5 are satisfied, therefore F' and T have coupled

coincidence point in A x B.
Forac Aandbe B s.t.0<b <2, then from (30) and (31)

F(a,b) =2=T(a) and F(b,a)=2=T(b). (41)

This shows that (a, b) is coupled coincidence point of F and T

The above example also shows that F and T" have infinitely many coupled coincidence points.
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