
 
 

454 | P a g e  

 

Security Intelligence in Cloud with                             

Intrusion Detection and Prevention Enhancements  

R.Sundar Raj
1
, Dr.V.Murali Bhaskaran

2
 

1
Research Scholar, Research and Development Centre,  

Bharathiar University, Coimbatore ,Tamilnadu,( India) 

2
Principal, Dhirajlal Gandhi College of Technology,  

Omalur (Tk), Salem, Tamilnadu,( India) 

 

ABSTRACT 

Security is a two-sided coin in the world of Cloud Computing with its own pros and cons. It has some 

contentious issues in it, especially in the area of confidentiality and protection. The main situation and a 

common cause through which the cloud network becomes insecure, is the happening of intrusions. Intrusions 

that causes the downtime to the well-built systems are to be dealt with iron hands, both in case of paid services 

and free services, as well. To thwart the adversaries of the system and to mitigate the vulnerabilities, 

introducing an efficient Intrusion Controlling Systems both in terms of Detection and Prevention that associates 

well with the Cloud Resource Management is an essential factor. The previous works of the authors have 

proposed the systems String Based Intrusion Detection System (SBIDS) and Self Monitored Intrusion Prevention 

System (SMIPS). Also these systems’ ideology and concept was conceived and the development methodologies 

was depicted with an analysis. In this research work, these systems with an innovative approach of seeking the 

support of string matching algorithms for the detection of intrusions and a self monitored approach in 

prevention of intrusions have been implemented. The presently followed Intrusion Detection and Prevention 

Systems in Cloud Computing may follow this proposed idea, to take out better results in identifying and 

preventing threat causing intrusions as early as possible with a lesser and easier effort in order to achieve the 

state of Security Intelligence. 

 

Keywords: CSPs – Cloud Service Providers, EVMM-  Enhanced Virtual Machine Monitor, 

Intrusion detection and prevention, SBIDS- String Based Intrusion Detection System, SMIPS – 

Self Monitored Intrusion Prevention System. 

 

I.INTRODUCTION 

 The Cloud service generally starts from the Cloud Service Provider (CSP) and ends up at the user level. The 

cloud resource usually gets ordered by the user who may be an individual or an enterprise. In most of the cases, 

the resources are dispatched to the users with an utmost speed and with a least latency. This is carried out in 

order to keep up the customers in a satisfactory level, but this may lead to the problem of mishandling of 



 
 

455 | P a g e  

 

resources with least security measures. Once the resource is given to the users, the usage starts and that is 

utilized by the real customers. Then after, the CSP would not interfere much in the usage of the resources, since 

it is a pay per use service and also due to the Service Level Agreements (SLAs) agreed. In some cases, these 

resources are used illegally by the intruders who may get in to the system due to mismanagement of resources at 

many levels like host, network or application.  

Almost every main kind of attacks are caused due to the intruders. If the intrusion paths are abolished at the 

initial level of the service, then the intruders would not be able to initiate an attack on any level in the middle. 

The task of this kind, exists in the present level of cloud service, but not in an optimal manner and even if 

provided, they are costly to get affordable. In order to overcome these issues, the channels of cloud resource 

need not be demolished and reconstructed since they are in a good condition, but they need to be reconfigured in 

the necessitated areas by getting adaptation with some proven algorithmic approach that are available outside 

the cloud, in the general space. When these problems are addressed an end-to-end securely managed resource 

travels from CSPs to users, can be offered in low cost comparing to the present level.  

 

1.1 Problems Addressed 

From the wide spectra of Cloud, the following problematic areas have been proposed and implemented. 

 Firstly, Security setup of the cloud needs focus. The chief attacks are caused due to the intruders. If the 

intrusion paths are not detected at Network level, then the attacks would reach the Host through Application. 

The main areas that are left unbothered are the conversion outcome of intrusion data packets, complex and 

lagging process of identification of new attacks. Thus, the need of a unique intrusion detection system for 

the cloud arises. Hence an improvised intrusion detection system has been implemented as String pattern 

Based Intrusion Detection System (SBIDS) in cloud  

 Secondly, an exclusively compatible intrusion prevention system corresponding to the second portion of the 

work is highly needed, since these both are treated as twin systems. With an idea of addressing this need 

with proper extemporizations a biography based Intrusion Prevention System with rules through Security 

Intelligence in cloud in the third part of the work. This has been carried out by proposing Self Monitored 

Intrusion Prevention System (SMIPS).  

 

II.RELATED WORK 

Anup H. Gade in [1], has addressed the importance of cloud management solutions, by providing adequate 

resources for cloud applications. In [17], Rodrigo N. Calheiros et al., have taken efforts to design and develop 

Cloud technologies with Simulation-based approaches by using CloudSim toolkit. In [8], Dhinesh Babu L. D 

and Venkata Krishna have proposed a load balancing technique for cloud computing environments. Weiwei 

Kong et al., in [19], have proposed a work that is based on the traditional VM resource scheduling algorithms. 

Suraj Pandey et al., in [18], have presented and compared the results of a scheduling heuristic based on Particle 

Swarm Optimization (PSO), against Best Resource Selection (BRS) heuristic and claimed that PSO outperforms 

BRS. In [2], Asaju La’aro Bolaji et al., have proved that Artificial Bee Colony (ABC) has the ability of solving 



 
 

456 | P a g e  

 

diverse sets of problems. Raj, R Sundar and Bhaskaran Dr. V Murali in [11], the technical guidance to overcome 

the major issues occurred on Cloud Computing has been proposed. Also, a roadmap to Virtualization approach 

in Cloud Computing has been proposed in [12]. In [13], an empirical study has been made with the motive of 

revolutionizing approach in Cloud Computing paradigm. Improved Cloud Security Mechanism with a Self-

Monitored Intrusion Prevention System has been proposed in [14]. Dervis Karaboga and Bahriye Akay in their 

work [7], have compared the performance of ABC algorithm with those of Genetic Algorithm (GA), PSO, 

Differential Evolution (DE) and Evolution Strategy (ES) optimization algorithms and have proved that the ABC 

algorithm is better than others.  

Raj, R Sundar and Bhaskaran Dr. V Murali, for the implementation of the intrusion controlling systems, the 

comparative analysis of cloud tools has been made in [15] to implement automated resource and security 

management system. Also in [16], securing cloud environment using a string based intrusion detection system 

has been proposed. In [10], Junaid Arshad et al., have focused on intrusion severity analysis in cloud and 

presented a Machine Learning (ML) based approach with Virtual Machine specific parameters. Chirag Modi et 

al., in [6] with their work have emphasized the usage of alternative options to incorporate Intrusion Detection 

System/ Intrusion Prevention System (IDS/IPS) into Cloud. In [3], Ashish Prosad Gope and Rabi Narayan 

Behera with their study, made it clear that Knuth-Morris-Pratt (KMP) algorithm performs better than other 

string pattern matching algorithms. In [5], B Rahul. Diwate and Satish J. Alaspurkar have projected that the 

performance of KMP has a less time complexity.  

 

III.EXISTING INTRUSION CONTROL APPROACHES – A BRIEF ANALYSIS 

 

The implementation is carried out at hardware level with cost demand and least flexibility in Physical Machines 

(PMs). In contrast to this, the implementation at software level with least cost and high flexibility in Virtual 

Machines (VMs). The common hurdles faced during the implementation of the existing IDS approaches are 

enlisted in Table 3.1.  

Table 3.1 Difficulties observed in the Existing IDS Approaches based on Implementation 

APPROACH SETBACKS OBSERVED 

Host based 

Detection 

This is a single system based method and thus does not have a wide scope in the range of 

intrusion handling. This may have a very low scope.  

The chief problem in installing the agent of the intrusion control, the things that are to be 

matched with the factors such as the configuration of the system, the behaviour  

This method is very strict that it does not allow any changes made to the system, even in 

case of extreme necessity 

Network 

based 

Detection 

 

Since the network of cloud is scalable, the widening and shrinking of cloud range is 

constantly changing 

The compatibility of Network based and Signature based Intrusion Detection Systems goes 

tedious in some cases. 



 
 

457 | P a g e  

 

 

By comparing all these detection methodologies, some drawbacks are given below: 

 The adaptation of Stack based anomaly management 

 Performing the examination at the layers of Application and Protocol 

 Capturing the whole traffic 

 Configuring rule sets 

 Insufficient handling of the Signalling mechanism 

 Not considering all the categories of possible attempts  

 

IV.PROPOSED INTRUSION CONTROL APPROACH  

 

4.1 Knuth Morris Pratt (KMP) Algorithm  

Knuth-Morris-Pratt (KMP) algorithm is an advantageous algorithm that is related to the task of matching the 

substring pattern to a main string pattern or the patterns that are available in the body of the text in a faster rate. 

This algorithm was first published in the year 1977 has got its name from the conceivers of the algorithm 

Donald Knuth, James H. Morris and Vaughan Pratt.  

The highlighting part of the KMP algorithm is that it keeps track of the information of the nature of the pattern 

that are gained as a result obtained by the completion of previous comparisons. The 2n possible number of loops 

are iterated with three possible choices that are mentioned below in Table 4.1. 

Table 4.1 Possible Choices on each iteration of KMP 

The monitoring and updation of signatures is given by the service providers to the third 

parties of Network for the efficient monitoring scope, that arises questions on data security. 

Application 

based 

Detection 

 

The web applications are very easy to get implemented, which also facilitates the intrusions 

to get entered to the network. 

Setting-up the firewall for applications is somewhat tedious, since it should be implemented 

individually to the application level.  

The data generated as a result of intrusions by the applications are limited in their volume. 

CHOICE OUTCOME WITH RESPECT TO CHANGES 

T[i]==P[j] The change of values: i++ and j, k remains unchanged 

T[i]!=P[j],                  

where j is +ve  
The change of values: k++, j = f(j-1), and i remains unchanged 

T[i]!=P[j],                  

where j is 0 

The change of values: i++, k++ and j remains unchanged 

At beginning   :   k = i – j 

When j= f(j-1) :   k = i – f(j-1) 



 
 

458 | P a g e  

 

 

4.2 Prefix Table generation in KMP 

  The pseudocode of generating Prefix Table in KMP is presented in Fig. 4.1. 

Prefix Table Generation 

1. begin 

2. m ← |p| 

3. Π[1] ← 0 

4. i ← 0 

5. for j= 2 until m do 

6.        if i>0 and P[i+1] != P[j] 

7.               i ← Π[i] 

8.         else                  

9.               Π[j] ← i 

10.       return Π  

11. end 

                 Fig. 4.1 Prefix Table Generation [KMP] - Pseudocode 

4.3 String Pattern Matching 

  The pseudocode of matching the string pattern in KMP is presented in Fig. 4.2. 

String Pattern Matching 

1. i ← 1 

2.  j ← 0 

3.  while i ≤ m-1 

4.        if P[j] = T[j] then 

5.               f(i) ← j + 1 

6.                  i ← i + 1 

7.                  j ← j + 1 

8.         else if j>0 then 

9.                 j ← f(j – 1) 

10.         else 

11.                f(i) ← 0 

12.                i ← i + 1 

Fig. 4.2 String Pattern Matching [KMP] - Pseudocode 

 

V. IMPLEMENTATION OF PROPOSED INTRUSION CONTROL APPROACH  

5.1 Adaptability of KMP into SBIDS 

The main objective of this part of the proposed approach is to overcome the setbacks of the surviving methods to 



 
 

459 | P a g e  

 

carry out intrusion detection in improved means and by adapting KMP at the level of string pattern matching. 

This attempt takes solid steps to outstrip the existing works with its unique approach towards string conversion, 

matching, signalling, and reporting, by firming up the groundwork of the process. ‘String Based Intrusion 

Detection System’ (SBIDS) approach has been formed in a neat manner with its own flow of action. While 

formulating SBIDS much number of notations is used to carry out the process with the support of algorithm.  

 

5.2 Objective Function and Key Constraints 

The main objective is to maximize the detection possibility of the intrusions in a very earlier stage.  

Max  

where, Trapped Packet index, k≥ 1; Ik[t] refers to the Intrusion suspect found at the time interval t; NDk refers 

to the Nodal points across the border zone of intrusion trap; LKk refers to the links associated to the nodal 

points.               

Subject to the key constraints, 

(i) Constraint of resource availability for carrying out the intrusion detection process   

         

         where, RAk refers to the resources availability of the system, SBik refers to the set of resources within the 

projected bandwidth of the detection area.  

              (ii) Speed of the detection while carrying out the regular tasks   

 

where, Sp refers to the Speed of the detection over the intrusive attempt, OA(Ik) refers to the occurrence attempt 

of an intrusion with suspected intrusive properties 

 (iii) Not increasing the signalling rate for the unwanted interruptions due to the bad quality network 

packets   

            

where, ~OA(Ik) refers to the occurrence attempt of suspected intrusive properties due to the bad quality 

harmless packets  

 (iv) Not increasing the resource consumption further without letting down the capability of the 

detection mechanism. 

            

where, RCk refers to the resources consumed for the detection process. 

 

5.3 Solution Space 



 
 

460 | P a g e  

 

The solution space is equal to the range of the dynamically interconnected virtual space that is working with the 

physical network association with the demand to offer cloud resources. The scalability of the system has been 

verified in the distributed cloud environment. The screening of the packets is carried out in multi levels with the 

minimum of three (in terms of level – Network, Application, Host) and could be maximized based on the 

dynamic computation of inner sublevels of detection carried out.  These two parts are intended in detecting and 

preventing intrusions with a string based approach, which is a pioneering idea and KMP which is a string 

matching algorithm is adapted to it. Appropriate biography information is maintained and duly updated 

regarding the intrusiveness and the actions that are to be taken are matched and followed with robustly framed 

rules. The intense of security is directly proportional to the value of an individual’s or organization’s resource. 

Hence the focus is channelized towards it. 

 

5.4 Implementation - Cloud based Tools and Datasets 

Appropriate cloud based tools for implementing the proposed approaches are speckled. For carrying out the 

resource related simulations and for dealing with the virtual elements of the system the framework of CloudSim 

is chosen and used. It has remarkable significances in fault tolerance, scalability and security with the support of 

modeling the application in the federated network of cloud. For carrying out the activities of intrusion detection 

and prevention the tool/ software named Snort is chosen and used in hand with CloudSim at the portion of 

creating rulesets.  

Even though the operational data sets are available in many cloud locations as complementarily public, standard 

and key datasets from the repositories: University of California, Irvine (UCI) Repository and European Union 

Open Data Portal with academic disciplines [20][21] whose properties are listed in Table 5.1. They are 

exclusively chosen to inflow the datasets for the implementation of the proposed approach and to carry out the 

analysis.   

Table 5.1 Properties of chosen Datasets 

Data collection method Document reviews and Surveys presented in Literature review  

Data Source UCI Repository, European Union Open Data Portal  

Type of Attributes Real 

Data model, Parameter Vector (1024)x10 parameters 

Dataset characteristic Multivariate, Time series 

Instances, Statistical measure Multiple Feature Selection, Standard Deviation 

Normalized value of datasets (Un-normalized value - Mean)/Standard Deviation 

Critical value In z-score by Normal Distribution calculator 

MOE (Margin of Error) Critical value x Standard Deviation 

Nature of datasets Machine Learning Community – Primary – Open Source 

Missing data in the datasets N/A 

Sampling-Method; Cluster Sampling; Normal 



 
 

461 | P a g e  

 

 

 

 

 

 

 

 

5.5 Snort – Rule based Implementation 

Snort is a popular and an open source tool that is financially, technically and administratively easier to 

implement in small networks. The reason is that rules can be defined at the application layer of a packet in Snort 

which gives the possibility to collect traffic data, specifically in application layer. Also, Snort is useful to deploy 

the proposed SMIPS, with scalable stream classification framework with high accuracy and low runtime 

overhead, but may need some lag of processing time in classification that is not necessary, since the proposed 

approach is using matching, rather using classification. It is used to provide flexible, scalable, and a cost 

effective system for the cloud environment. The proposed system works on multiple logical layers of host or 

network or application level and as well as in platform and application levels.  

 

5.6 Highlighting Factors of Implementation  

It maximizes the security and detection accuracy, because it monitors every changes and traffic which is gone 

through each layer. The highlighting factor in this is that the new intrusion trying to enter into the network is 

stored in a separate entry log and get converted into strings and matched with the StrBuffer and if the match is 

not found in the string level, then it is tested at the substring level, if the match is found the whole system is 

protected with the necessitated action and the report is sent back to the network components and the entry is 

prohibited inside the network, but the whole converted string pattern is kept stored in the StrBuffer and action 

history is updated in ActBuffer. If a totally new kind of packet, if tries to enter the validation is done at multiple 

levels and demands the positive acknowledgment for the possible entry of the packet in to the system. Thus, 

SMIPS guarantees a high level security by entrusting principles in controlling and managing the intrusions, in a 

robust manner. 

 

5.7 Implementation components  

String matching would be the first consideration to dramatically improve the performance, as it accounts for 

about 75% CPU load of SMIPS. Thus, in this work multi-pattern string matching algorithm is proposed to 

examine such a traffic volume against a large set of strings. Moreover, certain signatures are represented in the 

regular expression to save the storage space, which may need pre-processing techniques to receive significant 

improvement. The implementations have given satisfactory performance.  

 

 

Distribution 

Standardization Funded by National Science Foundation,  

Over 1000+ dataset citations in reputed journals 



 
 

462 | P a g e  

 

VI.RESULT ANALYSIS  

6.1 Implementation Results  

              (a)                                                                                  (b) 

 

 

 

 

           

 Fig. 6.1 [SBIDS] (a) Collecting Data from Data Source, (b) Simulation Log – PMs and VMs 

                     (a)                                                                                  (b) 

 

 

 

 

 

               

 

Fig. 6.2 [SBIDS] (a) Running the SBIDS Algorithm, (b) Match Log 

  (a)                                                                                    (b) 

 

  

 

  

 

  

              Fig. 6.3 [SBIDS] (a) String Match Rate, b) Sub string Match Rate 

                   (a)                                                                                   (b) 

 

 

 

 

 

 

            

   Fig. 6.4 [SBIDS] (a) Matching the generated String Patterns, (b) Build Result 

 



 
 

463 | P a g e  

 

             (a)                                                                                        (b) 

 

 

 

                    

 

 Fig. 6.5 [SBIDS] (a) Multinode performance in Pattern Matching, (b) Mapping Tasks  

             (a)                                                                                        (b) 

 

 

 

 

 

                        Fig. 6.6 [SBIDS] (a) Input Count with category of Intrusions, (b) Detection Rate  

             (a)                                                                                        (b) 

 

 

 

 

 

                          Fig. 6.7 [SBIDS] (a) Detection Result in Percentage, (b) Utilization of Processing Unit  

  (a)                                                                                        (b) 

 

 

 

 

                          

Fig. 6.8 [SBIDS] (a) Volume of Intrusion Data, (b) Utilization of Physical Memory 

                              (a)                                                                                        (b) 

 

 

 

 

 

 

                       Fig. 6.9 [SBIDS] (a) Intensity of Network Traffic, (b) Intrusion String Pattern sets 

 



 
 

464 | P a g e  

 

             (a)                                                                                        (b) 

 

 

 

 

 

 

                      Fig. 6.10 [SBIDS] (a) Detection of Attack, (b) Output of Itemset in Data Frame 

                                                   (a)                                                                                    (b) 

 

 

 

 

 

    Fig.6.11 [SMIPS] (a) Stream content of preventive action rules for users, (b) Defining Local rules  

 

6.2 Analysis on Results  

The SBIDS applications are facilitated in Fig. 6.1 (a), where the data collection happens with a basic login with 

Username, Password and additionally with the IP address. In Fig. 6.1 (b), the simulation log of PMs and VMs is 

shown through which the progress can be duly tracked. The numbers of compares and matches are shown in Fig. 

6.2 (a), while running SBIDS with string pattern in speedy mode with the index values of arrays.  At the same 

time, the match log associated with these compares and matches has been shown in Fig. 6.2 (b).  

The match rate progress with number of strings against string length of main strings has been shown in Fig. 6.3 

(a) and the match rate progress with number of strings against substring percentage of sub strings has been 

shown in Fig. 6.3 (b). In Fig. 6.4 (a), matching the generated string patterns has been shown with the code 

generation in NetBeans using java language with referred parameters and return values with the use of a built-in 

method contains (CharSequence s) that gives boolean results.  

In Fig. 6.4 (b), the build log is shown along with the total time consumed to find the pattern match at debugger 

console, after the successful running the SBIDS algorithm. In Fig. 6.5 (a), the Multinode performance with time 

of detection against the memory consumed with the corresponding to the matching offset is shown with a chart 

view.  

In Fig. 6.5 (b), mapping of tasks is shown with change of values in continuous mode. The input count with 

various categories of attacks such as Shared Tenancy attack, Downpour attack in heavy mode, Spoofing of 

Metadata attack, Botnet attack, DoS and DDoS attacks is shown in Fig. 6.6 (a) with input count samples 

respectively. In Fig. 6.6 (b), the False Negative and False Positive Rates have been successively given with the 



 
 

465 | P a g e  

 

overall accumulated values of Detection Rate: 98.7 (approx. - Rounded), False Negative Rate: 11.3 (approx. - 

Rounded) and False Positive Rate: 2.5 (approx. - Rounded).  

Among the files of the simulator, SBIDS application is opened as a new file, by setting necessitated attributes to 

carry out the detection process and a simple graph that has been generated to depict the obtained Detection Rate 

value with the values of False Negative and False Positive Rates is shown in Fig. 6.7 (a). Whereas in Fig. 6.7 (b), 

the overall utilization of processing unit is shown with command checks of sample loads and templates. The 

Volume of Intrusion Data that are trapped, the Utilization of Physical Memory and the Intensity of Network 

Traffic are shown in Fig. 6.8 (a), 6.8 (b) and 6.9 (a) respectively. In Fig. 6.9 (b), the iteration results are shown 

with the nature of the intrusions occurred along with the appropriate confidence values. The attack detection 

message popping out and the output of Itemset in Data Frame are shown in Fig. 6.10 (a) and 6.10 (b) 

respectively. Finally, in Fig. 6.11 (a) and 6.11 (b) the Stream content of preventive action rules for users, and 

results on defining local rules in Self Monitored Intrusion Prevention System (SMIPS) have been shown.  

 

VII. CONCLUSION  

By addressing these kind of intrusion based problems through this research work, an end-to-end securely 

managed resource travels from CSPs to users and can be offered in low cost comparing to the present level. The 

proposed approaches can give optimum solutions to the problems in the area of cloud resource and security 

management. It is to remark that any other cloud infrastructure similar to this, that emerges in future can be 

adapted and tested in the similar way. This is also open to improvisations for quenching any other future thirst in 

this area.  

The experimental results show that the proposed dynamic resource allocation scheme can improve resource 

utilization and achieves a good performance with security over virtualized environments, that also reduces the 

energy consumption in a considerable amount with a social significance, thus reduces user’s usage cost. 

Moreover, the proposed scheme has a simple implementation and, unlike many other approaches, it can avoid 

the complexity of re-allocation of physical resources with no intrusion possibility.  

 

REFERENCES 

1. Anup H. Gade. (2013). A Survey paper on Cloud Computing and its effective utilization with virtualization. 

International Journal of Scientific and Engineering Research, 4(12), 357-363.  

2. Asaju La’aro Bolaji, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar Mohammed A. Awadallah. 

(2013). Artificial Bee Colony Algorithm, its Variants and Applications: A Survey. Journal of Theoretical 

and Applied Information Technology, 47(2), 434 - 459.   

3. Ashish Prosad Gope and Rabi Narayan Behera. (2014).  A Novel Pattern Matching Algorithm in Genome 

Sequence Analysis. International Journal of Computer Science and Information Technologies, 5(4), 5450-

5457.  



 
 

466 | P a g e  

 

4. Brototi Mondal, Kousik Dasgupta, Paramartha Dutta, Kalyani and Visva. (2012). Load balancing in Cloud 

Computing using Stochastic Hill Climbing-A Soft computing approach. Elsevier, Science Direct- Procedia 

Technology, Bharati University, 4(1), 783-789.  

5. B Rahul. Diwate and Satish J. Alaspurkar. (2013). Study of Different Algorithms for Pattern Matching. 

International Journal of Advanced Research in Computer Science and Software Engineering, 3(3).  

6. Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel and Muttukrishnan Rajarajan. 

(2013). A survey of intrusion detection techniques in cloud, Elsevier, Journal of Network and Computer 

Applications, 36(1), 42-57.  

7. Dervis Karaboga and Bahriye Akay. (2009). A comparative study of Artificial Bee Colony algorithm. 

Elsevier, Journal of Applied Mathematics and Computation, 214(1), 108-132.  

8. Dhinesh Babu L. D and P. Venkata Krishna. (2013). Honey bee behavior inspired load balancing of tasks in 

cloud computing environments. Elsevier, Applied Soft Computing, 13(1), 2292-2303.  

9. Fouad Bahrpeyma, Ali Zakerolhoseini, Hassan Haghighi and Shahid Beheshti. (2014). Using IDS fitted Q 

to develop a real-time adaptive controller for dynamic resource provisioning in Cloud’s virtualized 

environment. Elsevier, Applied Soft Computing, 26(1), 285-298.  

10. Junaid Arshad, Paul Townend and Jie Xu. (2013). A novel intrusion severity analysis approach for clouds. 

Elsevier, Future Generation Computer Systems, 29(1), 416-428.  

11. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2014). Technical Guidance to Overcome the Issues on Cloud 

Computing. Journal of NanoScience and NanoTechnology, 2(6), 725-727. 

12. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2015). A Roadmap to Virtualization Approach in Cloud 

Computing. International Journal of Advanced Research in Data mining and Cloud Computing, 3(1), 33-37.  

13. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2015). An Empirical study on revolutionizing approach in Cloud 

Computing paradigm. International Journal of Contemporary Research in Computer Science and 

Technology, 1(6), 187-198. 

14. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2016). Improved Cloud Security Mechanism with a Self-

Monitored Intrusion Prevention System. International Journal of Advance Research in Science and 

Engineering, 5(12), 20-32.  

15. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2017). Comparative Analysis of Cloud Tools to Implement 

Automated Resource and Security Management. Indian Journal of Engineering (An International Journal), 

14(35), 20-32.  

16. Raj, R Sundar; Bhaskaran, Dr. V Murali. (2017). Securing cloud environment using a string based intrusion 

detection system. Advanced Computing and Communication Systems (ICACCS), 20174th International 

Conference on, 1-13.  

17. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, C´esar A. F. De Rose and Rajkumar Buyya. (2010). 

CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of 

resource provisioning algorithms. CLOUDS Laboratory, 41(1),.23–50. 



 
 

467 | P a g e  

 

18. Suraj Pandey, LinlinWu, Siddeswara Mayura Guru and Rajkumar Buyya. (2008). A Particle Swarm 

Optimization-based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments. 

The University of Melbourne, Australia.  

19. Weiwei Kong, Yang Lei and Jing Ma. (2016). Virtual   machine resource scheduling algorithm for cloud 

computing based on auction mechanism. Elsevier, Journal of Optik, 127(1), 5099–5104.  

20. UCI Repository –    

https://archive.ics.uci.edu/ml/support/Cloud 

21. European Union Open Data Portal -  

https://data.europa.eu/euodp/en/data/dataset/yUBHDpCh8MDqL9Gub8Qmq 

 

AUTHORS’ BIOGRAPHY 

 

R.Sundar Raj, Research scholar in Bharathiar University, Coimbatore and Assistant Professor, 

Department of Computer Science in Kongu Arts and Science College (Autonomous), Erode, 

Tamilnadu, India has received his B.Sc in Computer Science and MCA degree from 

Bharathiar University and secured University I Rank in both the degrees. He has also 

published research papers in International journals. He is currently pursuing Ph.D programme with his  area 

of research as Cloud Computing. 

 

Dr. V. Murali Bhaskaran, Principal, Dhirajlal College of Technology, Omalur, Tamilnadu, 

India has nearly 30 years of experience in technical education. He obtained his B.E. Degree 

in Computer Science and Engineering from Bharathidasan University, Trichy in the year 

1989, M.E. degree in Computer Science and Engineering and Ph.D in Computer Science 

and Engineering from Bharathiar University, Coimbatore in the year 2000 and 2008 respectively. He has 

published more than 40 papers in Journals and Conferences both at National and also in International level. 

His areas of interest include Computer Architecture, Computer Networks, Network Security, Information 

Security, etc., 


