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ABSTRACT 

Digital holography refers to the acquisition and processing of holographs. Image rendering, or reconstruction 

of object data is performed numerically from digitized interferograms. Digital holography offers a means of 

measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. 

Several recording and processing schemes have been developed to assess optical wave characteristics such as 

amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology 

applications. With the invent of wavelet based coding schemes like Embedded Zerotree Wavelet and Set 

Partitioning in Hierarchical Trees, the image compression and image processing community as a whole has 

taken a turn to the study of wavelet analysis. Defining a suitable wavelet involves the shape, size and also the 

number of the basis functions. The important features of basis functions are vanishing moments, size of support, 

regularity and etc.  Towards this end in this research work, the features of basis functions will be explored to 

find an optimal mother wavelet to be used in digital holography. In this paper, biorthogonal wavelets are 

explored and new variations are built and proved that the performance is superior to many existing ones.  

Keywords:Spline function, image compression, biorthogonal wavelet, basis functions, 

holographic images 

 

I.INTRODUCTION 

Consider wavelet transformation of an image for compression. Discrete wavelet transform will be applied to the 

image; the result of this transformation is wavelet coefficients or what is called wavelet domain. The 

transformation actually transforms the less correlated data to highly correlated data. When the inverse transform 

is applied directly on the transformed coefficients the original signal should be restored. Otherwise the 

transformation should not be used. This condition is called perfect reconstruction. All well-known wavelet 

transforms satisfy this condition [1][2].  

In transform coding schemes like Embedded zero tree wavelet (EZW) or Set partitioning in hierarchical trees 

(SPIHT), the coding scheme will be applied on wavelet domain or wavelet coefficients. Actually these coding 

schemes are formulated based on the structure of wavelet decomposition (coefficients) only. After performing 

the coding of these coefficients in a systematic way (called encoding) the compressed data is obtained. Here 

whenever we want to view the image the decoding and then inverse wavelet transform is applied [3]. Then 
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spatial domain image (generally deteriorated) is obtained. The aim of compression is to get a close reconstructed 

image (with original image) using few wavelet coefficients (or very less amount of memory). But this is very 

tough to maintain two things at a time because fundamentally these are inversely related [4]. 

All well-known wavelets satisfy perfect reconstruction condition, i.e., when we apply inverse wavelet transform 

directly on wavelet domain of the image we get exact original image. But when coding is applied on the wavelet 

domain the reconstructed image is different from original image and also it is different for different wavelet 

bases. So, the error between original and reconstructed image and size of coded wavelet coefficients depends on 

the wavelet bases used [5][6]. The wavelet bases are characterized by using parameters like vanishing moments, 

compact support, regularity, etc. Also compared to the orthogonal wavelets the biorthongoal wavelet system is 

flexible with more design options. Hence in this research new biorthogonal bases will be designed with the 

optimal wavelet bases for image compression in mind. 

 

II.DESIGN OF BIORTHOGONAL WAVELETS 

The design of biorthogonal wavelet is concerned in generating two sets of functions with certain properties. 

The two sets are supposed to be used one in decomposition and other in reconstruction phase of wavelet 

transform [7]. 
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Hence, 

)4(
~

)2(
~

)5(
~

)1(
~

),6(
~

)0(
~

hhandhhhh 
      

 
(3) 

Now apply the conditions on coefficients. The equation  1)(
~

dtt results 



 

354 | P a g e  

 

2)3(
~

)2(
~

2)1(
~

2)0(
~

2  hhhh
       

 
(4) 

Now use equation (1), i.e., 
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The general form of Spline of order k is given by 
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Consider Spline of order 4 which is given below. 
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The above spline is considered as one of the scaling function. 

Hence the un-normalized coefficients becomes, 
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Using Eqn. (2), the scaling coefficients becomes 
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Rewriting the above equations using Eqn. (8) becomes 
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For a total of 4 variables, four equations are formed but in these equations only the equations (9), (10) 

and (12) are independent. Hence another equation is formed below using vanishing moments. From 

vanishing moments condition,  
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Solving (9), (10), (12) and (13) yields 
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The coefficients of newly designed biorthogonal wavelet are given in the table below. 

 

Table 1. Wavelet and scaling function coefficients 
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K -1 0 1 2 3 4 5 6 

h
~

 
 0.1326 -0.5303 0.2210 1.7678 0.2210 -0.5303 0.1326 

g~   0.0884 -0.3536 0.5303 -0.3536 0.0884   

h    0.0884 0.3536 0.5303 0.3536 0.0884  

g  -0.1326 -0.5303 -0.2210 1.7678 -0.2210 -0.5303 -0.1326  

 

The above wavelet is denoted by „biors23‟ since if we take the reference as zero, the coefficients 

spreads from -2 to 2 and -3 to 3. Similarly two more wavelets using spline functions with different 

positioning are designed. These are „biors12‟ and „biors34‟ where the coefficients spreads from -1 to 

1 and -2 to 2 and -3 to 3 and -4 to 4. 

 

III.NEW BASIS FUNCTION BASED BIORTHOGONAL WAVELETS 

The standard Spline function is defined as follows. 
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Here the pi is the scaling value of dilated and translated spline function. The scaling value is directly 

proportional to binomial coefficients [9][10]. Hence symmetry is guaranteed. The coefficients are linearly 

distributed. Now a modified Spline is proposed. The new spline-like function is supposed to have symmetry 

but the coefficient values are modified to have more weight at center and gradually approaches standard 

spline function. The pi is modified and given below. 
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The coefficients of the standard Spline and proposed Spline-like functions are given in Fig. 1. 
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Figure 1. Coefficients of standard Spline function and proposed Spline-like function 

 

In Fig.1, the coefficients are given by ignoring the division by 2
k-1

. By using the above spline-like function 

with different lengths three wavelets are designed. These are denoted by „biorsl12‟, „biorsl23‟ and „biorsl34‟ 

respectively. The spline-like functions of length 3, 5 and 7 are utilized for „biorsl12‟, „biorsl23‟ and „biorsl34‟ 

respectively. The normalized coefficients of the spline-like function used for the wavelet „biorsl12‟ (k=2) are 

given below. 
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Similarly the coefficients for „biorsl23‟ (k=4) and „biorsl34‟ (k=6) are given below. 
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Using the property of double shift biorthogonality, normality, symmetry and vanishing moments 

the following equations are derived for „biors1‟. 
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The unique solution to the above system of equations is given below. 
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Similarly the coefficients for „biors1‟ and „biors2‟ are calculated and the coefficients of „coifs2‟ are 

given below. 
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The coefficients of „coifsl34‟ are given below. 
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The above are scaling function coefficients at decomposition and reconstruction side. The wavelet 

function coefficients are calculated from these values using expressions presented in previous 

sections. 

 

III.SIMULATION RESULTS 

This section is concerned with the simulation results of proposed wavelets used in image compression. The 

image compression schemes considered are EZW [11], SPIHT [12]-[15], spatial oriented tree (STW), Wavelet 

difference reduction (WDR) and adaptively selected wavelet difference reduction schemes (ASWDR). The test 

images considered are holographic images. The simulation was carried on large number of holographic images, 

and results on 6 images are presented in this section. Compression ratio (CR), Peak signal to noise ratio (PSNR) 

and Structural similarity (SSIM) are evaluated. These values are given in Tables 2 to 6, each using different 

coding scheme. 

 

Table 2. Compression results with EZW 

Image Parameter BIORS – 1 BIORS - 2 NBIOR - 1 NBIOR – 2 

1 

CR 5.57 3.86 9.97 7.19 

PSNR 26.95 19.76 28.74 22.40 

SSIM 0.93 0.76 0.95 0.83 

2 
CR 11.90 2.82 22.75 16.19 

PSNR 29.15 15.77 33.24 27.24 
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SSIM 0.92 0.44 0.95 0.83 

3 

CR 9.47 13.45 20.71 11.07 

PSNR 22.37 18.18 26.29 20.22 

SSIM 0.79 0.59 0.90 0.66 

4 

CR 6.58 5.43 12.70 8.26 

PSNR 31.06 23.97 33.66 28.26 

SSIM 0.88 0.65 0.91 0.77 

5 

CR 7.94 1.39 13.55 17.73 

PSNR 38.08 20.17 41.58 39.91 

SSIM 0.97 0.55 0.98 0.96 

6 

CR 26.42 4.45 37.62 47.15 

PSNR 47.34 26.42 49.50 44.95 

SSIM 0.99 0.51 0.99 0.97 

 

Table 3. Compression results with SPIHT 

Image Parameter BIORS - 1 BIORS - 2 NBIOR - 1 NBIOR – 2 

1 

CR 3.6087 2.4404 3.2873 4.7567 

PSNR 26.1213 19.0541 24.1373 21.7224 

SSIM 0.92216 0.73768 0.88011 0.80482 

2 

CR 7.9386 1.7466 7.9539 10.643 

PSNR 28.3256 15.5077 27.6953 26.2684 

SSIM 0.9102 0.41597 0.88143 0.80803 

3 

CR 6.7296 5.2261 5.6112 8.3216 

PSNR 22.0015 15.1597 21.1496 19.8948 

SSIM 0.77251 0.40269 0.71882 0.63342 

4 

CR 4.5664 1.9557 4.0095 5.5267 

PSNR 30.502 20.2151 29.4054 27.5773 

SSIM 0.87192 0.48083 0.82902 0.74209 

5 

CR 5.013 0.49591 8.6217 10.9985 

PSNR 37.1212 16.9451 40.3732 38.6803 

SSIM 0.96775 0.40436 0.97251 0.95226 

6 CR 11.7966 1.624 17.9693 21.9955 
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PSNR 41.5796 23.7292 45.6326 43.0904 

SSIM 0.96395 0.39073 0.97201 0.94831 

Table 4. Compression results with STW 

Image Parameter BIORS - 1 BIORS - 2 NBIOR - 1 NBIOR – 2 

1 

CR 5.1325 3.539 4.5776 6.7078 

PSNR 27.019 19.7979 25.0451 22.4944 

SSIM 0.93389 0.76529 0.89598 0.82735 

2 

CR 11.8474 2.5152 11.9654 16.0436 

PSNR 29.2839 15.7668 28.8566 27.5245 

SSIM 0.92252 0.43953 0.89834 0.83928 

3 

CR 9.785 7.7449 7.9707 11.6272 

PSNR 22.4244 15.4869 21.6035 20.2766 

SSIM 0.79177 0.4317 0.74118 0.65956 

4 

CR 6.4997 2.8392 5.5842 7.7993 

PSNR 31.1967 20.6166 30.3031 28.6499 

SSIM 0.8825 0.51031 0.84624 0.77924 

5 

CR 7.4443 0.68715 13.3372 17.249 

PSNR 38.4664 17.1371 43.1523 42.296 

SSIM 0.97358 0.41315 0.98101 0.97146 

6 

CR 17.3925 2.3371 26.6846 33.9111 

PSNR 43.9615 24.0129 50.1329 48.9213 

SSIM 0.97599 0.42525 0.98848 0.98061 

 

Table 5. Compression results with WDR 

Image Parameter BIORS - 1 BIORS - 2 NBIOR - 1 NBIOR – 2 

1 

CR 5.6824 4.0548 10.6979 7.7103 

PSNR 26.954 19.7575 28.7433 22.4007 

SSIM 0.93311 0.76418 0.95089 0.8251 

2 

CR 13.5417 2.9231 26.5121 19.042 

PSNR 29.1492 15.7688 33.2401 27.2354 

SSIM 0.92086 0.43959 0.9479 0.83108 

3 CR 10.5509 14.7349 24.4863 13.1343 
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PSNR 22.3746 18.1767 26.2868 20.2228 

SSIM 0.78952 0.58852 0.89718 0.65623 

4 

CR 7.1452 5.7958 14.0335 9.1283 

PSNR 31.0639 23.9727 33.6597 28.2584 

SSIM 0.87954 0.64747 0.91447 0.7697 

5 

CR 9.0083 1.413 16.2094 21.4671 

PSNR 38.0803 20.1726 41.5846 39.9106 

SSIM 0.97231 0.54858 0.97712 0.96322 

6 

CR 28.3427 4.6178 40.7277 52.3137 

PSNR 47.3422 26.4183 49.5037 44.9486 

SSIM 0.98946 0.50767 0.99114 0.97426 

 

Table 6. Compression results with ASWDR 

Image Parameter BIORS - 1 BIORS - 2 NBIOR - 1 NBIOR – 2 

1 

CR 5.5934 3.9708 10.5164 7.6538 

PSNR 26.954 19.7575 28.7433 22.4007 

SSIM 0.93311 0.76418 0.95089 0.8251 

2 

CR 13.2884 2.887 25.8657 18.7602 

PSNR 29.1492 15.7688 33.2401 27.2354 

SSIM 0.92086 0.43959 0.9479 0.83108 

3 

CR 10.4401 14.3611 24.0875 13.1195 

PSNR 22.3746 18.1767 26.2868 20.2228 

SSIM 0.78952 0.58852 0.89718 0.65623 

4 

CR 7.1025 5.6524 13.9277 9.1537 

PSNR 31.0639 23.9727 33.6597 28.2584 

SSIM 0.87954 0.64747 0.91447 0.7697 

5 

CR 8.5012 1.357 15.4043 20.3359 

PSNR 38.0803 20.1726 41.5846 39.9106 

SSIM 0.97231 0.54858 0.97712 0.96322 

6 

CR 27.1311 4.4769 39.0961 50.2151 

PSNR 47.3422 26.4183 49.5037 44.9486 

SSIM 0.98946 0.50767 0.99114 0.97426 
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IV.CONCLUSIONS 

In this paper, new biorthogonal wavelets are proposed. The newly designed wavelets are used for image 

compression. Five different wavelet based image compression techniques are considered. They are EZW, 

SPIHT, STW, WDR, and ASWDR. Simulations are performed on Holographic images. The main observation 

from the simulation results is that the compression ratio using proposed wavelets is extremely high in 

comparison with that of in existing wavelets. In most of the cases the compression ratio using proposed wavelets 

is more than twice that of the existing wavelets. In addition to achieving high compression ratio a tolerable 

PSNR was maintain.The spline function when changed by considering a criterion and also when the input 

images classified based on their characteristics, a more generalized and optimum mother wavelet function can 

be devised with the analysis present in this paper. 
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