

782 | P a g e

Partitioning Directed Acyclic Graphs

for path specific analysis

Sushobhit Singh
1
, Ajay Kumar Saxena

2

1,2
Department of Electrical Engineering, Dayalbagh Educational Institute, (India)

ABSTRACT

Graph partitioning is a very well-studied and applied problem in graph theory. Directed Acyclic graphs are used

in many applications where path based analysis is performed. With algorithms targeting path analysis, the paths

must not be partitioned for better performance per partition. We have presented a point handle based algorithm for

graph partitioning. We have shown on some random graphs that the algorithm we have developed doesn’t lead to

a partitioning with paths getting partitioned.

Keyword: Depth First Search (DFS), Directed Acyclic Graph (DAG), point handles

I. INTRODUCTION

Fig.1 A sample Directed Acyclic Graph

Graph, in computer science is an abstract data type, which is used for representing the mathematical graph

concept. A graph can be classified as directed or undirected, based upon the possibility of accessing the adjacent

vertices from a given vertex in the graph. In directed graphs the vertices are connected with the edges which

have direction associated with them, which means that all the adjacent vertices of a given vertex are not

accessible with the same cost. Directed acyclic graphs or (DAG) is an important class of graph structures which,

S0

S
1

E
0

E
1

E
2

783 | P a g e

is a finite directed graph with “no directed cycles”. A DAG contains no vertex, v that can be reached to itself

through a finite set of directed edges E [1]. Some of the important definitions, related to DAGs which we will be

using throughout this paper are presented below:

1. Path – A path is a finite set of directed edges. Set of all paths is denoted by P.

2. Start Point – A start point is a vertex v, in the DAG which does not have any incoming edges to it. S is

the set of all start points in the graph.

3. End Point – An end point is a vertex v, in the DAG which does not have any outgoing edges from it. E

is a set of all end points in the graph.

Graph partitioning [11] is the process of splitting a graph into separate parts which can be used in different

scientific and engineering problems where breaking a graph into smaller parts is needed, for example distributed

graph analysis problems. In this paper we have proposed a new graph portioning algorithm for partitioning a

DAG, in particular for applications which perform path based analysis.

Rest of the paper is organized as follows; we will describe briefly the point handle data structure in section 2.

Section 3 describes the path based graph partitioning algorithms. Section 4 describes the comparative

experiments and results, and conclusive remarks are made.

II. POINT HANDLE

Point handle (PH), is a vertex bound structure, which has a unique handle per vertex and it keeps the track of

splitting and merging of paths from vertices in a DAG. Fig. 2 describes a PH structure in detail; where we have

enlisted the main structure elements and define the basic intent of each one of them.

1. The source vertex handle, keeps the track of source vertex from where the PH is originated.

2. Master PH, keeps the track of PH from which the current PH is generated, it ensures that in constant time

one can reach from a PH to its master PH, and can be reached to the origin point or a start point of the path.

3. Merged PH container contains a set of PHs which are merged into this PH and are getting propagated

encapsulated in this PH.

Fig.2 Point Handle Structure

784 | P a g e

A unique PH is created at each of the start points in the Graph and they are propagated on the paths originating

from the vertices, but on each vertex of the graph we maintain only one PH explicitly. As described in Fig 3 the

tag split and tag merge operations lead to a special structure called a tag graph. In Fig 4 point handle

propagation through the example DAG is explained. A detailed account of PH propagation and associated

algorithmic steps is presented in [10], where algorithm on path enumeration [2-9] is discussed.

III. GRAPH PARTITIONING USING POINT HANDLES

In this section we will present the graph partitioning algorithm using the point handles. One very important

characteristic of the partitioning for path based analysis would be to keep the paths intact throughout the

portioning process. For this purpose we have defined a special data structure called a Point Handle Tree.

3.1 Point Handle Tree

A point handle tree is an inverted tree structure which is rooted at a point handle at each end point in the DAG.

Fig 5 shows the point handle graph of the example DAG of fig 1 and its resultant point handle tree.

Fig.3 Merge and Split on the graph and point handle connectivity

Fig.4 The point handle propagation on the DAG of Fig 1

785 | P a g e

Fig 5 Point Handle Tree for the DAG in Fig 1

3.2 End Tag Unification

Once the point handle trees are populated for a given DAG, point handle unification is performed which is the

process of marking the connected point handle trees. Uniquify_End_Point_Handle is the top level algorithm

which is used for performing unification. Once unification is performed a unique ID is propagated to each of the

point handles. This operation can be seen as coloring of the end point handles into unique colors, and hence each

point in the original DAG gets colored to a unique color. This information is used for partitioning of the graph.

 The algorithm for unification is presented below -

PH5 PH6

PH3 PH4

PH0

PH12 PH11

PH9 PH10

PH7 PH8

PH1

786 | P a g e

3.3 Graph Partitioning Using Connected End Point Handle Trees

Once the end point handles are uniquified, the partitioning can be performed as described in the partitioning

algorithm, Partition_DAG. With the uniquification already in place, partitioning algorithm goes through each of

the vertices in the DAG and put each vertex into its respective partition set. This is a fairly simple partitioning

algorithm which will ensure that the paths are not partitioned. One of the very important applications of the

partitioning algorithm is that the partitions which are created can easily be used for distributed path based

analysis, and there will be no inter-processor communication because no paths will ever encompass two

computing nodes in a distributed computing environment. This algorithm will also be able to break the graph

into partitions equal to the number of connected end point handle trees.

OPERATION:Enqueue_level_Point_Handle
 Input:Handle PHT, and unique ID IT

 Output:PH Queue, Q
 PH_Set ← Expand PH_Set (PHT)
 foreach PH | PH Є PH_Set

if Uniqification[PHT] ≠ ø
if Uniqification[PHT] ≠ IT

 Union_PH_ID (Uniqification[PHT], IT)
 continue
 Uniqification[PH] = IT

 Q ← enqueue(Master[PH])
 end

ALGORITHM: Uniquify_End_Point_Handle
 Input: Directed Acyclic Graph
 Output: UniquePH Id set
 foreach end point e | e Є V
 IE = get_unique_id
 Q ← enqueue (PH[e])
 while Q ≠ ø
 T = dequeue (Q)
 Enqueue_level_Point_Handle (T, IE)
 end
 end

OPERATION:Partition_DAG
 Input: Graph T
 Output: Graph Partitioned
 unique_set ← Uniquify_End_Point_Handles (T)
 for each vertex v | v Є V
 Partition[v] = unique_set_id[Tag[v]]
 end

787 | P a g e

IV. RESULT AND CONCLUSION

We have applied the graph partitioning algorithm on randomly created directed acyclic graphs. We have tried to

partition the graphs into different number of partitions and computed the standard deviation in the sizes of the

graphs for each partitioning run. The standard deviation in the sizes gives us the idea of quality of partitioning

attained by performing the same on random graphs. In some cases, high number of partitions could not be

created.

 Standard deviation in size of each partition

Graph

(#Nodes,

#Edges)

N=2 N=6 N=10 N=16 N=20

1362, 1924 134 120 80 48 NA

958, 3088 94 68 56 NA NA

2450, 2922 306 159 98 72 NA

1355, 1787 102 82 78 58 NA

As it can be seen from the results, there are two shortcomings of this algorithm –

1. It is not ultra-scalable, as it cannot lead to a large number of partitions and the number of partitions

possible by this algorithm is equal to number of individually connected end point handle trees.

2. Partitions generated by this scheme are not very balanced in terms of number of vertices and paths per

partition.

As a future extension of this work we may develop algorithms based on the idea of point handles which can lead

to scalable and balanced partitions.

REFERENCES

[1] GIUSEPPE DI BATTISTA et al, DRAWING DIRECTED ACYCLIC GRAPHS: AN EXPERIMENTAL

STUDY, Int. J. Comput. Geom. Appl. 10, 623 (2000). Reference of applications page where paths are

needed

[2] Eppstein, 1998, D. Eppstein, Finding the K shortest paths, Journal of the Society for Industrial and Applied

Mathematics, 28 (2) (1998), pp. 652-673

[3] Yau-Tsun Steven Li , Sharad Malik, Performance analysis of embedded software using implicit path

enumeration, Proceedings of the 32nd annual ACM/IEEE Design Automation Conference, p.456-461, June

12-16, 1995, San Francisco, California, USA [doi>10.1145/217474.217570]

[4] Dial, R B, 1971 “A probabilistic multipath assignment model which obviates path

enumeration” Transportation Research 5 (2) 83–111 Google Scholar, Crossref

[5] E. DeutschDyck path enumeration, Discrete Math., 204 (1999), pp. 167-202

[6] A. Marino, Analysis and Enumeration, Atlantis Studies in Computing 6, Atlantis Press and the authors 2015

http://www.sciencedirect.com/science/article/pii/S1755534513700058#bbib48
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
https://dl.acm.org/citation.cfm?id=217570&CFID=1008510690&CFTOKEN=55867488
http://doi.acm.org/10.1145/217474.217570
http://scholar.google.com/scholar_lookup?hl=en&publication_year=1971&pages=83-111&issue=2&author=R+B+Dial&title=%E2%80%9CA+probabilistic+multipath+assignment+model+which+obviates+path+enumeration%E2%80%9D&
http://journals.sagepub.com/servlet/linkout?suffix=bibr20-a090285&dbid=16&doi=10.1068%2Fa090285&key=10.1016%2F0041-1647%2871%2990012-8

788 | P a g e

[7] John J. Zasio, Kenneth C. Choy, Darrell R. Parham, "Static timing analysis of semiconductor digital

circuits", US Parent US4924430 A, issued May 8, 1990

[8] Maria Gradinariu 1 Sébastien Tixeuil , "Self-stabilizing Vertex Coloring of Arbitrary Graphs", International

conference on Principles of Distributed Systems (OPODIS 2000), Dec 2000, Paris, France. pp.55-70, 2000

[9] GuyMelançon, FabricePhilippe, "Generating connected acyclic digraphs uniformly at random", Information

Processing Letters Elsevier, Vol 90 Issue 4, Pages 209-213, 2004

[10] S Singh and A K Saxena, “A Novel Path Enumeration Algorithm for Directed Acyclic Graphs”,

International Journal of Advanced Research in Science and Engineering, Vol 06 Issue 11, Pages 1852-1861

[11] G. Karypis, V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”,

Technical Report 95-035, Department of Computer Science, University of Minnesota, Minneapolis, MN,

1995.

