
 

782 | P a g e  

Partitioning Directed Acyclic Graphs  

for path specific analysis 

Sushobhit Singh
1
, Ajay Kumar Saxena

2 

1,2
Department of Electrical Engineering, Dayalbagh Educational Institute, (India) 

 

ABSTRACT 

Graph partitioning is a very well-studied and applied problem in graph theory. Directed Acyclic graphs are used 

in many applications where path based analysis is performed. With algorithms targeting path analysis, the paths 

must not be partitioned for better performance per partition. We have presented a point handle based algorithm for 

graph partitioning. We have shown on some random graphs that the algorithm we have developed doesn’t lead to 

a partitioning with paths getting partitioned.  
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I. INTRODUCTION                               

 

Fig.1 A sample Directed Acyclic Graph 

Graph, in computer science is an abstract data type, which is used for representing the mathematical graph 

concept. A graph can be classified as directed or undirected, based upon the possibility of accessing the adjacent 

vertices from a given vertex in the graph. In directed graphs the vertices are connected with the edges which 

have direction associated with them, which means that all the adjacent vertices of a given vertex are not 

accessible with the same cost. Directed acyclic graphs or (DAG) is an important class of graph structures which, 
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is a finite directed graph with “no directed cycles”. A DAG contains no vertex, v that can be reached to itself 

through a finite set of directed edges E [1]. Some of the important definitions, related to DAGs which we will be 

using throughout this paper are presented below: 

1. Path – A path is a finite set of directed edges. Set of all paths is denoted by P. 

2. Start Point – A start point is a vertex v, in the DAG which does not have any incoming edges to it. S is 

the set of all start points in the graph. 

3. End Point – An end point is a vertex v, in the DAG which does not have any outgoing edges from it. E 

is a set of all end points in the graph. 

Graph partitioning [11] is the process of splitting a graph into separate parts which can be used in different 

scientific and engineering problems where breaking a graph into smaller parts is needed, for example distributed 

graph analysis problems.  In this paper we have proposed a new graph portioning algorithm for partitioning a 

DAG, in particular for applications which perform path based analysis. 

Rest of the paper is organized as follows; we will describe briefly the point handle data structure in section 2. 

Section 3 describes the path based graph partitioning algorithms. Section 4 describes the comparative 

experiments and results, and conclusive remarks are made.  

 

II. POINT HANDLE 

Point handle (PH), is a vertex bound structure, which has a unique handle per vertex and it keeps the track of 

splitting and merging of paths from vertices in a DAG. Fig. 2 describes a PH structure in detail; where we have 

enlisted the main structure elements and define the basic intent of each one of them. 

1. The source vertex handle, keeps the track of source vertex from where the PH is originated. 

2. Master PH, keeps the track of PH from which the current PH is generated, it ensures that in constant time 

one can reach from a PH to its master PH, and can be reached to the origin point or a start point of the path. 

3. Merged PH container contains a set of PHs which are merged into this PH and are getting propagated 

encapsulated in this PH. 

 

Fig.2 Point Handle Structure 
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A unique PH is created at each of the start points in the Graph and they are propagated on the paths originating 

from the vertices, but on each vertex of the graph we maintain only one PH explicitly. As described in Fig 3 the 

tag split and tag merge operations lead to a special structure called a tag graph. In Fig 4 point handle 

propagation through the example DAG is explained. A detailed account of PH propagation and associated 

algorithmic steps is presented in [10], where algorithm on path enumeration [2-9] is discussed. 

 

III. GRAPH PARTITIONING USING POINT HANDLES  

In this section we will present the graph partitioning algorithm using the point handles. One very important 

characteristic of the partitioning for path based analysis would be to keep the paths intact throughout the 

portioning process. For this purpose we have defined a special data structure called a Point Handle Tree. 

3.1 Point Handle Tree 

A point handle tree is an inverted tree structure which is rooted at a point handle at each end point in the DAG. 

Fig 5 shows the point handle graph of the example DAG of fig 1 and its resultant point handle tree.  

 

Fig.3 Merge and Split on the graph and point handle connectivity 

 

Fig.4 The point handle propagation on the DAG of Fig 1 



 

785 | P a g e  

 

Fig 5 Point Handle Tree for the DAG in Fig 1 

3.2 End Tag Unification   

Once the point handle trees are populated for a given DAG, point handle unification is performed which is the 

process of marking the connected point handle trees. Uniquify_End_Point_Handle is the top level algorithm 

which is used for performing unification. Once unification is performed a unique ID is propagated to each of the 

point handles. This operation can be seen as coloring of the end point handles into unique colors, and hence each 

point in the original DAG gets colored to a unique color. This information is used for partitioning of the graph.  

 The algorithm for unification is presented below - 
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3.3 Graph Partitioning Using Connected End Point Handle Trees 

Once the end point handles are uniquified, the partitioning can be performed as described in the partitioning 

algorithm, Partition_DAG. With the uniquification already in place, partitioning algorithm goes through each of 

the vertices in the DAG and put each vertex into its respective partition set. This is a fairly simple partitioning 

algorithm which will ensure that the paths are not partitioned. One of the very important applications of the 

partitioning algorithm is that the partitions which are created can easily be used for distributed path based 

analysis, and there will be no inter-processor communication because no paths will ever encompass two 

computing nodes in a distributed computing environment. This algorithm will also be able to break the graph 

into partitions equal to the number of connected end point handle trees.  

  

 

 

 

 

 

 

 

OPERATION:Enqueue_level_Point_Handle 
 Input:Handle PHT, and unique ID IT 

 Output:PH Queue, Q   
    PH_Set ← Expand PH_Set (PHT) 
  foreach PH | PH Є PH_Set 

if Uniqification[PHT] ≠ ø  
if Uniqification[PHT] ≠ IT 

     Union_PH_ID (Uniqification[PHT],  IT) 
    continue  
   Uniqification[PH] = IT 

   Q ← enqueue(Master[PH])       
  end 

ALGORITHM: Uniquify_End_Point_Handle 
 Input: Directed Acyclic Graph 
 Output: UniquePH Id set 
  foreach end point e | e Є V 
   IE = get_unique_id 
   Q ← enqueue (PH[e]) 
   while Q ≠ ø 
    T = dequeue (Q) 
    Enqueue_level_Point_Handle (T, IE) 
   end  
  end  

 

OPERATION:Partition_DAG 
  Input:  Graph T 
  Output:  Graph Partitioned 
   unique_set ← Uniquify_End_Point_Handles (T) 
   for each vertex v | v Є V 
    Partition[v] = unique_set_id[Tag[v]] 
   end 
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IV. RESULT AND CONCLUSION 

We have applied the graph partitioning algorithm on randomly created directed acyclic graphs. We have tried to 

partition the graphs into different number of partitions and computed the standard deviation in the sizes of the 

graphs for each partitioning run. The standard deviation in the sizes gives us the idea of quality of partitioning 

attained by performing the same on random graphs. In some cases, high number of partitions could not be 

created. 

 Standard deviation in size of each partition 

Graph 

(#Nodes, 

#Edges) 

N=2 N=6 N=10 N=16 N=20 

1362, 1924 134 120 80 48 NA 

958, 3088 94 68 56 NA NA 

2450, 2922 306 159 98 72 NA 

1355, 1787 102 82 78 58 NA 

As it can be seen from the results, there are two shortcomings of this algorithm –  

1. It is not ultra-scalable, as it cannot lead to a large number of partitions and the number of partitions 

possible by this algorithm is equal to number of individually connected end point handle trees. 

 

2. Partitions generated by this scheme are not very balanced in terms of number of vertices and paths per 

partition. 

As a future extension of this work we may develop algorithms based on the idea of point handles which can lead 

to scalable and balanced partitions. 
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