

151 | P a g e

Design and Verification of 8-Bit

RISC CPU Using Verilog HDL

Avantika Kumari1, Kumari Amrita2

1,2B.Tech-M.Tech Student VLSI, Department of Electronics and Communication,

 Jayoti Vidyapeeth Women's University (India)

ABSTRACT

RISC architecture involves and attempt to reduce execution time by simplifying the instruction set of the

computer for this RISC CPU is implemented on VCS tool of Synopsys platform of Unix and the source code is

written in Verilog and verification by Verilog.

Keyword : Addressing Mode, Central Processing unit , Verilog

I. INTRODUCTION

As the processor technology began to evolve beginning with 4_bit and 8_bit processors, the trend was to have

more instruction capability to the processor. As a consequence, the control unit and instruction decoder became

very complex. In some processors, the control unit occupies 50 to 60% of the chip area. This results in the

reduction in space available to registers. Similarly, the instructions that access memory tend to slow down the

code execution. This fact gave rise to RISC design philosophy that focused on a small set of frequently used

instruction, thus simplifying the hardware design and improving the processor performance., [1]. In this paper

Verilog is used to endorse a design and to evolve a Test bench that can reuse and it is described in step by step as

defined by verification principles and methodology.

II. RISC CPU

To read an instruction the contents of Program counter are transferred to the address lines. This is done when

the fetch signal is high and the address multiplexers chooses the contents of the program counter to be loaded on

to the address bus. As soon as the contents of the program counter are loaded onto the address bus a memory

read cycle is initiated and the instruction is read from the location pointed out by the address lines and the micro

instruction code is placed onto the data bus. The program counter is incremented to point to the next micro

instruction in the memory location of the control memory. The data bus transfers the micro instruction to the

instruction register. The instruction register has two fields, in the different formats namely.

1. Opcode, Data operand.

2. Opcode, Address of data operand

152 | P a g e

Fig 1:- Block Diagram of RISC CPU

During the first case the Opcode is given to the ALU and Decoder for decoding and a series of micro operation

are generated. The data operand is loaded on to the data bus and transferred to the ALU for its respective micro

operations as specified by its Opcode. In the second case the address of the data operand is loaded onto the

address bus (as the fetch signal is low and the multiplexer loads the IR’s address contents onto the address lines)

and a memory read cycle is initiated. Here the memory location in the main memory specified by the address

lines is read and the data is transferred onto the data bus and thus given the ALU to undergo the operations

specified by its Opcode. The results of the ALU are stored in the Accumulator. Data operations may be

combined with the memory contents and the Accumulator and result is transferred back to the Accumulator. The

function of the Nor gate is that whenever all inputs are low the output is high and at all other times remains low.

It is attached to tristate buffer. When the tristate buffer is enabled the data from ALU is fed to the memory thus

allowing the data to be stored into the memory. When disabled the data is given to all and cut off from being

written onto the data bus. Whenever there results a zero in the ALU a zero flag is set.

III. INTERNAL ARCHITECTURE DESCRIPTION

A) CLOCK GENERTOR

Clock generator generates clock, clock2, fetch signal. For every negative edge of clock, clock2 is generated and

for every positive edge of clock2, fetch signal is generated. Clock2 is generated form clock and fetch is

generated form clock2. They are used as the input to decoder which controls the operation of CPU. It generates

reset pulse. In RISC CPU reset signal must be active-low. The reset should allow the reset of the signals to go

high on falling edge of clock2 when fetch is low.

153 | P a g e

Fig 2:- RTL Design of Clock Generator

B) INSTRUCTION REGISTER

In instruction register instructions are fetched form and stored in this. It performs the action always at position

edge of clock. It has 3 instruction clock, reset, load-ir and data as input and output is Opcode and address. If

LDIR and reset both are high, data in instruction register splits into upper 3 bits as Opcode and lower 5 bits as

q-address.

Fig 3: RTL Design of Clock Generator

C) ACCUMULATOR

Accumulator is a register; the result form Arithmetic Logic Unit is stored back in the accumulator. It has clock,

reset, load-acc and ALU_OUT as input and accumulator as output. It is activated only at the positive edge of

clock. If LDACC and reset both are high, data in the accumulator is loaded into ALU_OUT.

Fig 4:- RTL Design of Accumulator

154 | P a g e

D) MEMORY

In RISC CPU the memory should be 8-bit wide, 32-bit location deep. Each instruction retrieved form the

memory will have its upper 3 bits as the Opcode and lower 5-bit as the address. Memory block has MEM_RD,

MEM_WR and address as input and data as output. If MEM_RD is high, it reads the data of memory to the data

register, if MEM_WR is high, data is written to the memory.

Fig 5 :- Block Diagram of Memory

E) ARITHMETIC AND LOGIC UINT: The ALU is a multiplexer, performs standard arithmetic

and logic operations.

Fig 6 :- RTL Design of ALU

ALU operations should be synchronized to negative edge of the clock (period is 20). At each negative edge The

operation performed is listed below a total of 8 operations performed. The ALU should perform the appropriate

operation on the incoming data and accumulator, placing the result in ALU_OUT

The 3 bit Opcode decodes as follows:

155 | P a g e

000 Pass Accumulator

001 Pass Accumulator

010 Add (data+ Accumulator)

011 And (data& Accumulator)

100 Xor (data ^ Accumulator)

101 Pass data

110 Pass Accumulator

111 Pass Accumulator

Table 1:- Opcode Decoding

F) MULTIPLEXER (2 TO 1):

The address multiplexer decides one output out of the two given inputs.

Fig 7 :- RTL Design of Multiplexer

When the fetch signal is high, the address of the program counter is transferred on to the address buses and

hence the instruction is fetched. But if low the operand address specified in the address file of the instruction

register transferred onto the address bus and consequently fetched.

G) PROGRAM COUNTER:

It is a 5 bit general purpose register. The program counter points to the next micro instruction to be fetched

from the memory. In case of an unconditional branch the said address is loaded in to the program counter for

fetching of that instruction .Normally, after the fetch cycle is completed the program counter is incremented and

now those points to the next instruction.

156 | P a g e

Fig 8:- RTL Design of Program Counter

H) I/O BUFFER

A buffer is a region of a physical memory storage used to temporarily store data while it is being moved from

one place to another. However, a buffer may be used when moving data between process within a computer.

Fig 9:- RTL Design of Program Counter

I) INSTRUCTION DECODER

A decoder provides the proper sequencing of system. It has clock, fetch, clock2, reset, zero instruction and

Opcode as input and LDPC, MEM_RD, MEM_WR, LDACC as output. The zero bit should be whenever the

accumulator is zero. The decoder issues a series of control and timing signal. Depending on the Opcode it

decodes after it receives from the instruction register.

The decoder is a simple finite state machine which consists of states. During the first states it generates a control

signal for address setup. The address bus is setup and the contents of the program counter are transferred onto

the address bus. The instruction fetch is generated in the second state and the instruction is read from the

memory with the memory read signal and transferred onto the data bus. When the third state starts the

instruction is loaded with the LDIR being high into the instruction register. The Opcode is sent to the decoder

and the appropriate control and timing signals are initiated for the execution cycle. This is done in the next state

in which it remains idle during the decoding of the Opcode. . The fetch cycle ends, and the program counter is

incremented with the Inc signal. The execution cycle starts and the address is again setup in the fifth state, but

this time instruction register’s Address field is loaded onto the address bus.

157 | P a g e

The operand is fetched in the sixth state with the MEM_RD signal being high and the data is transferred onto the

data bus and given to the ALU for processing. In the seventh state the ALU is given its ALU_CLOCK and in

synchronization with the falling edge of the clock the respective operation is performed. In the last stage the

decoder issues an LDACC signal to store the result in to the accumulator.

Fig 10 :- Block Diagram of Decoder

IV. VCS RESULT

Fig 11:- RTL Design of 8-Bit RISC CPU

158 | P a g e

Fig 12:- Simulated waveform of 8-Bit RISC CPU

V. EDA TOOLS AND METHODOLOGIES

HDL: Verilog HVL: Verilog

Tool : VCS (Synopsys) Plateform : UNIX

VI. CONCLUSION

The design of 8-Bit RISC CPU is implemented using Verilog HDL and verified by Verilog HDL and

compiled on VCS tool of Synopsys platform of Unix successfully and Addition, AND,XOR, Pass

Accumulator, store operation etc. performed only in 1 cycles.

REFERANCE

[1] Shimizu, Toru, et al. "A multimedia 32 b RISC microprocessor with 16 Mb DRAM." Solid-

State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE

International. IEEE, 1996.

[2] Suzuki, Kazumasa, et al. "V830R/AV: Embedded multimedia superscalar RISC processor." IEEE Micro

18.2 (1998): 36-47.

[3] Santhanam, Sribalan, et al. "A low-cost, 300- MHz, RISC CPU with attached media processor." IEEE

Journal of Solid-State Circuits 33.11 (1998).1829-1839.

[4] Shimizu, Toru, et al. "A multimedia 32 b RISC microprocessor with 16 Mb DRAM." Solid-State Circuits

159 | P a g e

Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE International. IEEE, 1996.

[5] Sakthikumaran, Samiappa, S. Salivahanan, and VS Kanchana Bhaaskaran. "16-Bit RISC processor design

for convolution application." Recent Trends in Information Technology (ICRTIT), 2011 International

Conference on. IEEE,2011.

