
 

404 | P a g e  
 

Mathematical model of Blood flow in arteries in presence 

of applied Magnetics field and effect of velocity slip 

Sarfraz Ahmed
1
, Amar Jyoti Goswami

2
 

Kaziranga University, Assam (India) 

 

ABSTRACT 

In this study, the flow of blood can be controlled by applying appropriate magnetic field on poiseuille flow of 

Bingham plastic fluid model for blood with velocity slip. The application of Magneto dynamics in physiological 

flow problem is of growing interest. Mathematical modeling for poiseuille flow of blood plastic fluid model with 

an axial velocity slip along an artery wall in presence of magnetic field, is considered. It is observed that when 

Hartmann number increases the fluid velocity is greatly affected. The present model includes the poiseuille flow 

models of slip at artery wall and one- layered Bingham plastic fluid model with zero-slip, as its special cases. 

Applications of this theoretical modelling to cardiovascular diseases and the role of slip in the better 

functioning of the diseased or occluded arteries are included in brief.   

Keywords: Bingham plastic fluid model Reynolds Number, Hartmann number, Velocity profile, Non -Newtonian 

fluid. 

 

I. INTRODUCTION 

Mathematical analysis of arterial blood flow is currently receiving intensive study by both life scientist and 

engineers. Stenosis refers to localized narrowing of an artery and is a frequent result of arterial disease and is 

caused mainly due to intravascular atherosclerotic plaque which develops at the arterial wall and protrudes into 

the lumen of the vessel. Such constriction disturb normal blood flow through the artery [23] [26]. There is 

considerable evidence the hydrodynamic factor can play a significant role in the development and progression of 

the disease [20] [21] [22]. Blood flow through arteries can be complicated by the formation of atherosclerotic 

plaque the artery wall its subsequent advancement impedes the flow through and artery. This unwanted growth 

at vessel wall may ultimately affect the wall shear stress distribution [12] [13] [15]. The cardiovascular system 

of man and animals is characteristically a branch network of distensible tubes which carry blood from the heart 

to periphery and back again [4] [7] .The primary function of circulation is to transport nutrient to tissue and to 

remove metabolic product, Human blood is a suspension of red cells in a continuous and aqueous substance 

called plasma [8] [9]. The plasma behaves like a Newtonian fluid with a co-efficient of viscosity 1.2 centipoises 

whereas the whole blood is shear dependent that is the apparent viscosity of whole blood decreases with an 

increase rate of shear it has an infinite yield stress under certain flow condition and the viscosity of blood varies 

with hematocrit and also changes with temperature as well as dieses state .At high shear rates blood behaves as a 

Newtonian fluid with constant viscosity in larger arteries ,diameter nearly above 1 mm as shear stress decreases 

blood shows a Non  Newtonian character [19] and other [11][18]have pointed out that viscosity of blood in 
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general and interior viscosity of red cells in particular can be in significant factor in pathogenesis of ischemia 

and infraction and may play an important role in hypertension and cardiovascular disease[17][18].In most of the 

theoretical models on blood flow, usual no slip condition at vessel wall is considered[2][3][6][1] have suggested 

the likely presence of a red cell slip at vessel wall or in its immediate neighborhood and in view of a possible 

existence of slip at tube wall[14][10][25] and other have considered a velocity slip condition at blood vessel 

wall or at interface of fluid in their modeling, in the present modeling the blood flow through an artery a slip 

condition for velocity at tube wall of two different locations of CVS is employed. 

Here we consider for one dimensional flow axial velocity   = (0, 0, ) the equation for steady tube flow 

Rr 0   of blood (a-Bingham fluid) in  zr ,, co-ordinate system reduce to obtain the following form in 

presence of transverse magnetic effect. 
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From which we observed that pressure does not vary in the radial  circumferential   and axial  direction 

and that pressure remain constant across any cross-section of the tube and  is a function of only   that is 

=p(   and so pressure gradient term in the last equation above becomes             

Then (3) 

0ˆ
ˆ

ˆ
ˆ

ˆ

1

ˆˆ

ˆ1 2 




















 uB

r

u
r

rrz

p z










 

Non-dimensional form   
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Let the solution of the above equation: 
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Again, shear stress component at any distance r from the tube axis is given by 

0e
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duz
rz              (6) 
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Express for wall shear stress  can be obtained from the formula  
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Bingham equation defined in the form where  
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In the above, vanishing of strain rate that is 0e  

ZU =constant= 0U When 0                                            (13) 
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Where 0U   is the core velocity at r=r0   (core radius) .As such for blood flow when r0   there arises two 

region 00 rr  and Rrr 0  it is clear for region between 0 and  equation representing the flow is 

0
dr

duZ   00 rr                                         (14) 

On integration  0UUZ    00 rr    indicating the velocity profile will become flat in the region and for 

Rrr 0  velocity 
ZU  will show deviation from flat profile and Bingham equation (11) has to be applied for 

this domain of blood flow the same equation it is easily seen that 
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The velocity slip condition at vessels wall is SZ uu   Rr                 (16) 

Where  SU  is the constant slip velocity at tube wall in axial distance. 
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rr 0 expression for core velocity can be obtained from equation (17)   
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And for all values of r between 0 and  velocity function is 

 0uu z     00 rr                    (19)
            

Thus from above expression and consideration velocity distribution 
zu can be re-written in the following 

manners 
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Where )(ruz
and 0u are given in equation (17) and (18) respectively  

The rate of volume flow can be found from  



 

408 | P a g e  
 






R

r

zdrruQ
0

2  

By integration after using the equation (16). (17) and (19) 

 

R

r

z

r

drrudrruQ

0

22
0

0   

   



















 










32
4

002
4

2 2

3

12

3

4

8
MCR

RR
MCR

R
uRQ ees






                                      (21) 

And expression for apparent viscosity a  can be found from the formula 
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And using equation (22), apparent viscosity take the following  
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The parabolic velocity profile for poiseuille flow the takes the form 
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Employing an axial velocity slip at the tube wall, instead of usual no slip in velocity along the wall the velocity 

function for poiseuille flow will takes the form  
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In the aforesaid cases velocity is maximum at the axis of the tube and expression for maximum velocity 

obtained from equation (23) and (24) are given by  
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Expression for rate of volume flow Q can be accordingly obtained for above two cases in the form  
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Table-01: 

Data for five different locations in Cardiovascular system(SUD AND SEKHON)(1985) 

Sl. No. Name of an 

artery 

Radium 

(R*) 

X 10
-2

m 

Pressure gradient 

(C*) 

X10 kg. m
-2

.s
-2

 

r
0
/R** 

    00.00 
 

04.00 
 

10.00 
 

01 Aorta 1.00 1.46 0.0000 0.0548 0.1370 

02 Femoral 0.50 6.40 0.0000 0.0250 0.0625 

03 Carotid 0.40 10.00 0.0000 0.0200 0.0500 

04 Coronary 0.15 139.74 0.0000 0.0038 0.0095 

05 Arteriole 0.008 400.00 0.0000 0.0250 0.0625 

Centre Line Velocity:  Centre line velocity (  is obtained from equation (18) and its variation with yield   

and it is greater than equal to zero at all three  location CVS and for both slip no-slip condition at artery wall is 

presented in the following table: 

Table-02 

  Centre Line Velocity  

cm/sec 

  

L
o

ca
ti

o
n
 

AORTA             FEMORAL 

 

 

Y
ie

ld
 

S
tr

es
s 

  

With no slip 

( =0.0cm/sec) 

With no slip 

( =0.1cm/sec) 

With no slip 

( =0.0cm/sec) 

With no slip 

( =0.1cm/sec) 

 

0.00 0.1830 0.2900 0.1999 0.3000 

0.04 0.1700 0.2643 0.1880 0.2885 

0.10 0.1355 0.2400 0.1700 0.2700 

Conclusion: 

Here we have attempted to study the behaviour of poiseuille flow of Bingham plastic fluid model for blood flow 

with velocity in presence of magnetic effect.  A steady one-dimensional flow of blood (-a Bingham fluid) 

subject to the boundary conditions of velocity slip, suggested in the models of [15] [16] Chaturani and Biswas 

[6] and, Prahlad and Schultz [17], for five different locations of CVS, in presence of magnetic effect is 

investigated. Analytic expressions for velocity, flow rate, shear stress at wall, yield stress and apparent viscosity 

are presented. Axial velocity appears to be a function of pressure gradient C, radial coordinate r, tube semi-
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diameter R, critical radius 0r  (or yield stress 0 ), Bingham fluid viscosity a  and su  axial velocity slip at the 

boundary.  

The following conclusion are observed (Table:01and 02) in this model they are : 

i) If shear stress 
rz at a distance is not higher than a finite yield stress, blood will not           flow. 

ii) If shear stress is not lower than its yield value, blood flow will be possible.  

iii) Velocity profiles indicate a parabolic profile in all arteries and for slip and no-slip cases with the usual 

maximum magnitude at tube axis and a minimum velocity at the boundary in case of vanishing yield 

stress. 

iv)  These blunted for flat profiles in velocity  00   clearly exposes the non-Newtonian nature of blood 

(viii)  Assumption that velocity variation in axial direction is negligible as compared to its variation in radial 

direction, may lead to the implication that the length of the artery is too large as compared to the radius. 

(ix)  Velocity profile increases when Hartmann number M increases in different fluid parameter viz., yield 

stress  0
0
 . The nature of velocity profile is also same in no slip. 

(x) Velocity profile for a full scale of dimensionless radial co-ordinate  from the tube axis to vessel will 

clearly state that. 

(xi)Velocity  increases due to an insertion of an axial velocity slip at tube wall that it is found higher 

with slip at wall than the velocity obtained with zero slip at an artery wall and it is true for two blood vessel. 

(xii)As  increases velocity  decreases from a higher value to a lower one in Aorta and femoral. 

(xiii)Magnitude of  is maximum at  and minimum at   

(xiv)Flow rate Q increases due to velocity slip at the boundary ,as yield stress increases ,flow rate is 

increases in different arteries and Q is maximum seen at aorta the largest artery. 

In present problem velocity is maximum at the axis and reduces to the magnitude of a slip velocity .In 

the present analysis, A velocity slip condition at vessel wall is employed due to its physiological signifance 

.As a result this model clearly established the facts that a slip at an artery wall accelerates the flow and 

retards the resistance to flow. 
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Fig. 1. Variation of velocity profiles Uz with Hartmann number M in Aorta when T0=0 

 

Fig-02  variation of velocity profile  with  Hartmann numberMin Aorta M  T0=0.04 
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Fig. 3. Variation of velocity profiles with Hartmann number M when T0=0.10 

 

Fig. 4. Varation of velocity profiles Uz with Hartmann number M in femoral when T0=0 
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Fig. 5. Variation of Velocity profiles Uz with Hartmann number in Femoral when T0=0.04 

 

Fig. 6. Variation of velocity profiles Uz with Hartmann number M at femoral when T0=0.10 
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