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ABSTRACT 

CDFP-Mine, a novel approach for finding huge Colossal Pattern Sequences (CPS) from High Dimensional 

Biological Datasets is talked about in this paper. CDFP-Mine has successfully found Determinate Frequent 

Patterns (DFP) which is additionally advanced into a DFPT
+
 tree to produce CPS with vector intersection 

operator. CDFP-Mine influences utilization of a novel incorporated data structure called Hyperstructure 'H-

struct', as a blend of a data matrix and one-dimensional arrays exhibit as a pair to powerfully find DFP from 

Biological High Dimensional Datasets. DFPT+ tree is developed as Bitwise Top-Down Column identification 

tree. H-struct has an assorted element to encourage is, it has amazingly restricted and precisely predictable 

primary memory and runs rapidly in memory based requirements. The algorithm is planned such that it takes 

just a single scan at the database to find CPS. The exact investigation on CDFP-Mine demonstrates that the 

proposed approach achieves a superior mining effectiveness on different high dimensional datasets and beats 

Colossal Pattern Miner(CPM) and BVBUC in various settings. The execution of CDFP-Mine on the high 

dimensional dataset is assessed with Accuracy and Frequency measures. 

Keywords: Bitwise Vertical Bottom Up Colossal mining(BVBUC), Colossal Pattern Miner(CPM), 

Colossal Pattern Sequences, Determinate Frequent Patterns(DFP), DFPT
+
 tree 

 

I. INTRODUCTION 

Present day Computational Biology known as Bioinformatics investigation is increasing much significance in 

the extraction of learning from biological high dimensional datasets. The Bioinformatics has created different 

vital algorithms for biological information examination. The best part is its solid association with Medicine. The 

advancement in Medical innovation in a decade ago has presented another type of datasets called biological 

datasets understood as Microarray and Gene Expression Datasets. In contrast to transactional datasets, those 

unreasonable dimensional databases normally have few rows(samples) and an enormous wide assortment of 

columns(genes). Truth is told, from the genome arrangements or biology framework, the fundamental endeavor 

is too aware of useful qualities for intense assessment. In bioinformatics, the researcher can utilize the advances 
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in computational biology to explore enormous and complex datasets. KDD and Data Mining have worried as an 

unavoidable need to separate valuable data and information from these datasets.  

Next in Data Mining introduction, Frequent Pattern Mining(FPM) picked up as an unmistakable information 

mining paradigm that helps to separate patterns that thoughtfully symbolize relationship among discrete 

attributes and plays out a basic part in data mining and information investigation assignments and in additional 

applications. Fundamentally in view of the multifaceted design of those relations, select sorts of patterns can 

emerge. The most widely recognized sort of patterns has a tendency to mine successive patterns[5][6], 

association rules[1][2], correlations[4], episodic[3], clustering[11], classification[10][12], and maximal patterns 

and frequently closed patterns[7]–[9].  

There are various algorithms produced for frequent patterns quick and proficient mining, which are classified 

into two classes. The first class candidate era strategy, including apriori[2] and its observations, are in 

perspective of apriori-property[2]: if a specimen altogether isn't normal, at that point it's incredible example can't 

visit. The apriori-based arrangement of standards accomplished proper lessening around the estimated hopeful 

sets. In spite of the way that, when there are many frequent patterns or possibly lengthy patterns, it will take 

multiple scans over the colossal database to develop candidate sets. The second class, pattern-growth strategy, 

which incorporates FP-Growth, furthermore makes utilization of the apriori-property. Be that as it may, it 

recursively partitions the database into sub-databases to generate candidate sets. It makes restricted scans over 

the database. 

 

II. LITERATURE SURVEY 

Within the literature, numerous algorithms had been developed under pattern growth method for discovering 

frequent patterns and closed patterns[8][14][15]. It uses enumeration primarily based approaches[8][15][16], 

wherein object mixtures are searched for frequent colossal patterns. In view of this, their running time increases 

exponentially with growing the average duration of the data and makes minimal two scans over the database. 

These will consume huge extent of memory utilization and predictably takes sufficient time when memory 

primarily based constraints are present. Those algorithms are rendering to be impractical on high dimensional 

microarray datasets. The entire sets of frequent closed patterns have received the use of row enumeration space 

turned into first shown in[16], which was also found in[13]. 

Although, the present frequent pattern mining strategies nonetheless encounter the subsequent difficulties. 

• All object enumeration based totally mining strategies are based on singleton patterns and take lots time to 

compute those patterns. 

• Massive primary memory is required for powerful mining. While memory constraints are present, an apriori-

like set of rules will no longer be powerful because it produces large candidates for lengthy patterns. Sufficient 

memory space is needed to keep candidate sets for discovering frequent patterns of various lengths. Fp-growth 

evades candidate generation with the aid of condensing into an FP-tree. 
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• Real-time databases keep all of the instances. Most of the datasets in real time programs are either sparse or 

dense. It's far hard to pick a right mining method on the fly which fits all instances. 

• Real-time programs require high dimensional and scalable. Numerous current procedures are powerful for 

smaller size data sets. However, as the dataset size will increase the existing strategies suggests fit falls on core 

data structures and requires sufficient memory. 

• Multiple scans over the database. Most of the existing Apriori and FP-Growth strategies make numerous scans 

over the databases. Efficient data garage systems are needed to keep intermediate results. 

Row enumeration search can be explored by way of building projected database recursively[17]. The vertical 

bottom-up method is enabled to mine efficient huge styles of large size[18]. However, there is a want to 

consider column enumeration algorithms certain in lots of algorithms are proposed to mine frequent colossal 

patterns. However, for high dimensional datasets, the pattern mining problem consumes greater time and space. 

If a dataset is with one hundred rows and one thousand columns, the present enumeration algorithms work 

properly if a threshold is set to low while discovering colossal patterns and frequently generates a big variety of 

discovered patterns without an appropriate data. However, traditional fpm techniques are having suit falls in 

handling high dimensional datasets due to its dimensionality, length and primary memory utilization. Those 

pretenses a novel mission on design and developing a new method which is efficient in pattern mining on big 

databases in which space requirement is restricted. For that reason, Determinate Frequent Pattern(DFP) mining 

is taken into consideration for studying biological datasets. 

                               Table-1. Sample database 

xRowid Genes 

S1 gG1,gG2,gG3, gG5,gG7,gG8,gG9 

S2 gG1,gG3,gG4,gG5,gG6,gG8,gG10 

S3 gG2,gG5,gG6,gG7,gG8 

S4 gG1,gG2,gG3,gG4,gG5,gG6,gG7,gG11 

S5 gG1,gG2,gG4,gG6,gG7 

S6 gG2,gG5, gG7,gG8,gG9,gG10,gG11 

 

 

III.MOTIVATION AND CONTRIBUTION 

The improvements in Bioinformatics added to the advancements of new datasets called High Dimensional 

Datasets. Investigation of Genetic structures like DNA, RNA, and Protein groupings from Biological datasets 

will grow new advancements in diagnosis of medical. To do this CPSs are to be found and Determinate 

Frequent Pattern(DFP) mining is considered as extremely useful for these datasets analysis. The issue of DFP 

mining is to locate the entire arrangement of Colossal Pattern Sequences in a given biological high dimensional 

dataset. The fundamental goal is to find all Colossal Pattern Sequences in a given biological high dimensional 

dataset D with respect to user min_sup threshold value.  
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An effective new algorithm CDFP-Mine that is uniquely intended to find vast Colossal Pattern Sequences over 

biological high dimensional datasets is portrayed, in this paper. CDFP-Mine influences utilization of another 

data structure called Hyperstrucure(H-struct) which can be utilized to find Colossal Pattern groupings by 

performing attribute enumeration as depth-first row-wise, and proficiently decreases the searching time over the 

dataset. CDFP-Mine has the accompanying stages; initial, a determinate frequent pattern revelation algorithm is 

proposed for the diminished datasets utilizing H-struct that can fit into the memory. Second, CDFP-Mine 

utilizes another property list column vector based intersection operator to find pattern arrangements efficiently 

by decreasing the search time and database scans. The test comes about demonstrate that this approach creates 

better outcomes when mining biological high dimensional datasets and outflanks Colossal Pattern Miner on 

various settings. 

 

IV.BASIC PRELIMINARIES 

Let G = {G1,G2,….,Gm} be an arrangement of m gene attributes. An X is a subset of attributes with the end goal 

that X ⊆ G. So, G = {G1,G2 ,… ..,Gm} is also denoted as G = G1,G2, … ,Gm. Let S = {S1, S2, … .., Sn} be a set 

rows speaking to trial conditions opposed over organic dataset, where every Si is an arrangement of n subsets 

called genes. Each row in S distinguishes a subset of things. S = ( Rowid, X ) is a two-tuple, where Rid is a row-

id and X is an attribute. S = ( Rowid, X ) is said to contain Y attribute if and just if Y ⊆ X. Table-1 demonstrates 

a case of the dataset in which the genes are spoken to from g1 to g11. Give the initial two sections of Table-1 a 

chance to be our example data collection. Table-I demonstrates a database is the arrangement of trial conditions. 

Every Si contains a subset of genes spoke to in lexicographic request. The main objective is to discover all 

Colossal Pattern Sequences in a given biological high dimensional dataset DB with regard to user minimum 

support threshold. 

Definition-1: A support(s) is defined as the number of transactions in database that contains both A and B, 

represented as its frequency. Support (A B) = P(XUY) 

Definition-2: Confidence(c) of the Rule A B is true in the database, if it contains the number of transactions 

containing A that also contains B, represented as Confidence(A B) = P(B|A) = P(A B)|P(A) 

Definition-3: The Relative frequency of an attributes, A, B is contained in database, the relative frequency is 

defined as 

Relative frequency (RF) = support(A,B)/support(A) 

Definition-4: An Association Rule is an inference of the form A → B between two attributes X and Y where A, 

B  I and A ∩ B = , which satisfies user supplied Support s and Confidence c. 
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Definition-5: Determinate Frequent Pattern: A determinate frequent pattern can be frequent if both items in 

the set are frequent by themselves. A determinate frequent pattern set (A, B) is frequent if both A and B in the 

set is also frequent and it is true in database, if it is having its min_sup above 2. 

Definition-6: Colossal Pattern Sequence: An attribute set A  I, is a pattern sequence, if and only if sup(A) ≥ 

min_sup and must be a determinate frequent pattern. 

V.RELATED WORK 

For a given set highlights in the biological high dimensional dataset, we have a tendency to characterize a gene 

articulation matrix(M) with m X  n. Table-2 demonstrates a bit framework of M, that is identical to gene 

articulation matrix of the DB, where 1-signifies 'overexpressed' and 0-signifies 'underexpressed.' A transaction 

of gene articulation information is identified with 'overexpressed' information. 

By performing column-wise prune on gene articulation matrix M in view of minimum support and wipe out the 

columns whose aggregate occurrences are less than minimum support. Table-3 shows that the pruned gene 

articulation matrix with the minimum support is three.  

Table-2. A sample database of Gene articulation matrix(M) with Support Count(SC) 

rRowid gG1 gG2 gG3 gG4 gG5 gG6 gG7 gG8 gG9 gG10 gG11 

S1 11 11 11 00 11 00 11 11 11 00 00 

S2 11 00 11 11 11 11 00 11 00 11 00 

S3 00 11 00 00 11 11 11 11 00 00 00 

S4 11 11 11 11 11 11 11 00 00 00 11 

S5 11 11 00 11 00 11 11 00 00 00 00 

S6 00 11 00 00 11 00 11 11 11 11 11 

Support 

Count  

(SC) 

04 05 03 03 05 04 05 04 02 02 02 

Table-3 Gene articulation matrix pruned with 3 as min_sup 

rRowid gG1 gG2 gG3 gG4 gG5 gG6 gG7 gG8 

S1 11 11 11 00 11 00 11 11 

S2 11 00 11 11 11 11 00 11 

S3 00 11 00 00 11 11 11 11 

S4 11 11 11 11 11 11 11 00 

S5 11 11 00 11 00 11 11 00 

S6 00 11 00 00 11 00 11 11 

Support Count 

(SC) 
04 05 03 03 05 04 05 04 
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The support is given as the frequency of the rows in the dataset that contains a set of features G'. The relative 

frequency of rows in the dataset that contain A is called its support of A, A ⊆ I for a given item set is the 

recurrence of rows in the dataset that consists A. For a set of patterns,  a colossal pattern sequences with a 

maximum length. 

VI.CDFP-MINE 

In this segment, we study efficient mining of colossal pattern sequences from biological high dimensional 

dataset. The mining process of CDFP-Mine illustrated in first subsection with an example and the next, 

algorithm of the CDFP-Mine. 

6.1 Discovering colossal pattern sequences and mining process 

Within the literature, there are distinctive approaches to investigate the biological high dimensional datasets. 

High dimensional databases characterized as experimental conditions as rows and huge gene variables as 

columns. This extraordinary feature will decrease the quantity experimental conditions in pattern mining 

procedure through building a data matrix search techniques. Row enumeration algorithms work properly when 

the dataset size is low dimensions.  

Horizontal search method can't do efficient mining of patterns for the reason that possibility of discovering the 

exponential order of items. H-struct matrix is built the use of vertical seek approach as shown in Fig-1. For the 

identical gene expression data in Table-1 with minimum support = 3, we introduce a determinate frequent 

pattern mining method for mining colossal pattern sequences. This method explores the concept of vector 

databases as shown in Fig-1. 

6.1.1 Finding determinate frequent patterns 

Using vertical search strategies, construct a data matrix such that each attributes is a bitwise column vector and 

their corresponding genes are in the all rows of this column vector. Now scan the dataset and mark the row 

number corresponding to each row and column. Each entry in the matrix is a column vector contains set of bit 

fields and storing with binary values. Its support values are stored in triple count array as shown in the Fig-1. 

Pattern pair set   K 

            {G7,G8} 3 28 

            

 

- 

            

G1.G2 

{G5,G8} 4 25 

   

 

       

1 

{G5,G7} 4 24 

           

0 

{G5,G6} 3 23 

 

  G1 G2 G3 G4 G5 G6 G7 G8 

 

0 

 

- 

  

G1 - 1,4,5 1,2,4 2,4,5 1,2,4 2,4,5 1,4,5 1,2 

 

1 

{G3,G5} 3 13 

 

G2 - - 1,4 1,5 1,3,4,6 3,4,5 1,3,4,5,6 1,3,6 

 

1 

{G2,G7} 5 12 

 

G3 - - - 2,4 1,2,4 2,4 1,4 1,2 

 

0 
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- 

  

G4 - - - - 2,4 2,4,5 4,5 2 

  {G2,G5} 4 10 

 

G5 - - - - - 2,3,4 1,3,4,6 1,2,3,6 

 

G5.G8 

 

- 

  

G6 - - - - - - 3,4,5 2,3 

 

1 

{G1,G7} 3 6 

 

G7 - - - - - - - 1,3,6 

 

1 

{G1,G6} 3 5 

 

G8 - - - - - - - - 

 

1 

{G1,G5} 3 4 

           

0 

{G1,G4} 3 3 

 

b) 2-level determinate frequent pattern sequences 

 

0 

{G1,G3} 3 2 

           

1 

{G1,G2} 3 1 

         

 c) Column vector 

a) One Dimensional Triple Array Pair Set 

                         Figure-1. Hyper structure Matrix with column vector database and triple pair set array 

6.1.2 One dimensional triple array pair set 

In general, the ARM algorithms keep up various item count recurrence esteems all through a look over a 

database. For example, it's fundamental to have sufficient primary memory to store each pattern count that the 

quantity time’s sets of a pattern pair happen inside the database. It's difficult to update a 1 to a count set where 

the counting groups are held on various locations of memory and troublesome in loading the page to primary 

memory. In these cases, the algorithms will be ease back to find that count of pattern pair in primary memory 

since it requires additional overhead on handling time and expands a time to discover set of a frequent pattern. 

In this manner, it's hard to count an esteem that necessities enough fundamental memory. When it includes high-

dimensional datasets, it's hard all to maintain in one memory. 

To optimize main memory, a pattern pair(i, j) occurrence in the dataset should be counted in one place. If the 

CPS order is i < j, and uses only one entry M[i,j] in two dimensional array M. This approach makes half of the 

array as useless. Count Array(CA) is a more efficient way to store CPSs in memory. 

A count array is defined as a one-dimensional triple array set which will store a count as CA[k] for the pair(i,j), 

with 1 ≤ i < j ≤ n, where  

To discover colossal pattern sequences, CDFP-Mine performs an iterative depth first search (DFS) on column 

enumeration strategy. By imposing backtracking search order on column sets, we are able to perform a 

systematic search over colossal pattern sequences.  

6.1.3 Pruning the search space by creating a DFPT
+
 tree  

 The gene sequence be R discovered from data matrix, R-is gene in database which exclusively contains a 

particular gene and its Rowid count must be above the min support threshold as shown in Table 4. The 

discovered determinate pattern pair sets can be divided into 7 non-overlap subsets based on the data matrix. 

Each non-cover subset is changed over into DFPT
+ 

tree. The tree is built as a phylogenetic tree. Presently it is 

conceivable to list gene G1, with the end goal that a non-covering subset which has a place with pattern G1. Then 

again for every gene G1, if G1 has a place with all rows of Ci which condition g1 will make gene database about 
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G1. A vertical top-down tree is developed in a reality that the size of the corresponding pattern of a node G1 in a 

vertical top-down search tree DFPT
+
 is not as much as the span of any of its siblings' comparing to G1. So in 

each branch of this tree, the size of the pattern is more prominent than the size of patterns which are delivered in 

level i of the branch. Since the level one of a tree contains DFP with min_sup. On the off chance that we 

investigate the tree just to min_sup level; it can find all the colossal patterns of the dataset. The DFPT
+
 tree 

seeks just min_sup level of a tree which is conditioned explicitly on non-covering set and prunes its branch. 

Fig.2 indicates sub tree for the arrangement of a subset that containing only G1 and another sub tree for the 

arrangement of subsets containing only G2. 

Table-4. A gene DFP database 

Sl. 

No. 

Genes Rowid 

numbers 

On conditioned 

1. G1 

 

{G2, G3, G4, G5, G6, G7} 

2.     G2 

 

{G5, G6, G7, G8} 

3.  G3 

 

{G5} 

4. G4 

 

{G6} 

5. G5 

 

{G6, G7, G8} 

6. G6 

 

{G7} 

7. G7 

 

{G8} 

 

 

Figure-2. DFPT
+
 sub trees of gene G1

 
and G2 
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6.1.4 Discovering (CPS) colossal pattern sequences 

We can extend each i-level pattern pair sets to frame a new bitwise column vector to decide the equal to CPS 

which are frequent or not from the discovered gene DFP databases. In the search strategy of column 

enumeration, each pattern sequence is a segment set and its supplement gene is those which there are on the 

whole rows of this segment set. By performing the intersection operation on column vectors to decide the 

corresponding pattern sequence which results a column bit vector. Pattern sequence discovery contains only 

gene G1, and after that containing just G2 gene and so on. The remaining mining procedure can be performed on 

H-struct, just without referring the original database. For every DFP there is a k value. 

Within the above instance, the pair set G1•G2 may be explored on G3 to create a brand new pattern pair set as 

G1•G2 and G3. It plays bitwise vertical intersection on G1•G2 and G3 and discovers a brand new DFP pair set. Its 

corresponding count value is stored on a 3-level triple count array. G1•G2 and G3 isn't identical to both G1•G2 or 

G3. Consequently, it's also known as colossal patterns and its count is 2, which is stored in a triple array. Figure-

3 shows min_sup pruned DPT+ tree for the dataset of Table-1. Based totally in this tree we will construct a 

pruned bitwise vector tree for discovering colossal pattern sequences. We will expand every level 2 node of this 

tree and construct its children and go on increasing to subsequent level with min_sup. By using performing 

Column vector intersection and expanding to next level, this procedure is repeated recursively with a brute force 

backtracking and forwarding, we are able to find out long colossal pattern sequences which are colossal patterns 

as in Table-5. 

 

Figure-3. DFPT
+
 Tree for discovering colossal pattern sequences 

Table-5. Pattern sequences generated using column vector intersection operator. 

Sl. No. (CPS) Colossal Pattern Sequences 

1 {G1, G2, G3, G5, G7} 

2 {G1, G2, G4, G6, G7} 

3 {G1, G3, G4, G5, G6} 

4 {G2, G5, G6, G7} 

5 {G2, G5, G7, G8} 

6 {G1, G3, G5, G8} 

7 {G1, G2, G7} 
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8 {G1, G4, G6} 

9 {G2, G5, G7} 

10 {G2, G6, G7} 

11 {G5, G6, G8} 

12 {G2, G7} 

13 {G5, G8} 

 

6.2 Accuracy levels are measured for the discovered CPS 

In discovering of CPS from DFP mining, the level of the rightness of our algorithm is measured utilizing the 

"Frequency” and "Accuracy" measures to assess the general execution; these are described by utilizing the 

formulas.  

Let A→B be the found determinate pattern sequence, at that point 

 

 

 

6.3 CDFP-Mine algorithm 

In a given gene database, a relevance frequency(RF), the problem of mining the set of DFPs can be considered 

as partitioning into n-subproblems. The problem of partitioning can be performed recursively that is each subset 

of mining can be further divided when necessary. This forms a divide and prune framework. To mine the 

subsets of mining, we construct corresponding DFP Databases. 

For each remaining attribute i in Ai, starting from it recursively calls CDFPmine(i X, DT|i , Ai ,CPS) to build its i 

-level DFP Database DT|i and discover all its patterns using dynamically created count array. 

Input: Gene Database and relevance frequency as min support threshold 

Output: the complete set of Colossal Patterns 

Method:  

1. Initialize CP0, let CP as set of colossal patterns 

2. Scan the database and compute data matrix and discover all DFPs pair set and create a DFP database DB 

3. Call CDFPmine(0,DB,Ai,CP) 

Procedure CDFPmine(iX, DT|i, Ai, CP) 

Let iX : the DFPs if DB is x-DFP database,  

DT|i: DFP Database 

Ai: Attribute list. 

DP: Relevant Frequency (RF) distribution over frequent pattern 
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1.  N LENGTH(DT|i); 

2. CPempty vector of length N+1; 

3. iX data vector of length N+1;initially all 0.0; 

4. iX[0]2.0 

5.   for i = 0 to n do 

for j=0 to i-1 do 

CP DT|i [j:i] 

Initialize wLENGTH(CP) 

if DP[CP]  iX [i-w] ≥ iX [i] then  

iX [i] DP[CP] * iX [i-w]; 

CP[i]  CP; 

6. for i = 0 to N 

7. if (level i is min_sup) then  

8. while i>0 do 

if (CP[i] is colossal) then insert CP[i] onto child of i;  

call CDFPmine(iX, DT|i, Ai, CP)  

9.  i i-LENGTH(CP[i]) 

10.   return(iX [i], CP) 

 

VII.RESULTS & PERFORMANCE ANALYSIS  

In this segment, we will modify the execution of our algorithm with Colossal Pattern Miner(CPM) and BVBUC. 

The run-time is measured as elapsed time and IO seeks for time. CPM has demonstrated its better execution on 

finding Colossal Pattern Sequences which is an enumeration based algorithm. We executed this algorithm and 

contrast our technique with them. In our execution consider, we utilized the various size of the datasets; it is 

hard to evaluate the min_sup threshold as an absolute value. Rather, the min_sup limit dictated by relative 

frequency (RF). To compare the algorithm, experiments performed on five real datasets from UCI[19]. Table-6 

demonstrates the characteristic data about the datasets.  

Table-6. Test datasets and their Characteristics 

Name of Dataset #genes #samples 

Diabetes  17  768  

Heart 28 303 

Breast-Cancer 25 699 

Prostate-Cancer 12600 102 

Lung-Cancer 12533 181 
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Table-7 and Table-8 demonstrate the consequence of running three algorithms CDFP-Mine, CPM and BUBVC 

on a real standard dataset Lung-Cancer(LC) and Prostate-Cancer(PC). It seemed that with expanding min_sup 

all the algorithm executed in the dataset will be diminished. 

In regularly FPM algorithms, it is observed that the performance is poor when min_sup is lower value. In this 

way when the min_sup is small, CDFP-Mine has an effective mining proficiency. From Fig. 4 the performance 

on Lung-Cancer(LC), the distinction of the effectiveness of CDFP-Mine with CPM and BVBUC is very much 

when the min_sup is low value. From the Fig. 5 the performance on Prostate-Cancer(PC), it is observed that 

CDFP-Mine has a most extreme distinction in running time with CPM and least with BVBUC when the support 

is minimum value.  

Table-7. Performance on Lung-Cancer (in sec) 

Minimum Support CDFP-Mine Colossal Pattern Miner (CPM) BVBUC 

0.1 06 41 21 

0.08 09 52 24 

0.06 28 65 39 

0.05 35 98 58 

0.03 49 116 72 

 

Table 8. Performance on Prostate-Cancer (in sec) 

Minimum Support CDFP-Mine Colossal Pattern Miner (CPM) BVBUC 

0.1 11 67 21 

0.08 15 70 26 

0.06 31 75 37 

0.05 44 86 48 

0.03 48 89 50 

 

 

 

Figure-4. Performance on LC (sec) 
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Figure-5. Performance on PC (sec) 

Tables-9 and 10 demonstrate the accuracy of Colossal pattern sequences discovered using CDFP-Mine on 

different datasets is displayed. 

Table-9. Colossal pattern sequences discovered using CDFP-Mine (with uniform RF) 

Name of 

Dataset 

#Pattern 

sequences 

Maximum 

Accuracy 

(MA) 

Highest 

Frequency 

Measure (FM) 

Accuracy 

Measure 

(ACC) 

Average 

Frequency 

Measure (FM) 

Accuracy 

Measure 

(ACC) 

Diabetes 923 97.79 68.54 74.09 66.87 73.83 

Breast-

Cancer 

6936 100.00 96.08 96.42 94.55 95.12 

Heart 41096 100.00 80.37 80.85 66.05 70.27 

 

Table-10 Colossal pattern sequences discovered using CDFP-Mine (with varying RF) 

Name of 

Dataset 

#Pattern 

sequences 

Maximum 

Accuracy 

(MA) 

Highest 

Frequency 

Measure (FM) 

Accuracy 

Measure 

(ACC) 

Average 

Frequency 

Measure (FM) 

Accuracy 

Measure 

(ACC) 

Diabetes 1133 97.79 68.26 73.70 67.20 73.70 

Breast-

Cancer 

11338 100.00 95.74 96.13 94.22 94.84 

Heart 62833 100.00 79.40 79.87 64.74 69.94 

 

VIII.CONCLUSION 

CDFP-Mine a new algorithm is presented to mine high dimensional datasets. In this algorithm, we iteratively 

built a data matrix H-Struct, a bitwise portrayal of the dataset for a powerful revelation of DFPs. To extract 

CPS, we utilized a vector column intersection bitwise operation to encourage the algorithm. To improve the 

efficiency of the mining process and memory constraints, we also utilized Triple Pair Count Array alongside H-
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Struct. The exact investigation demonstrates that our algorithm has accomplished great mining efficiencies 

under various settings. Besides, our performance analysis shows that this algorithm additionally accomplishes 

the most elevated Frequency and Accuracy measures in finding CPSs and significantly the best contrasted with 

earlier created algorithms. 
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