

792 | P a g e

Implementation of 32 Bit Fixed Point Arithmetic Logic

Unit (ALU), on FPGA using VHDL

Neelesh Kumar Kachhwaha
1
, Prof.Sunil Shah

2

1
Tech (VLSI Design) Gyan Ganga Institute of Technology and Sciences Jabalpur, MP (India)

2
ept. of ECE Gyan Ganga Institute of Technology and Sciences Jabalpur, MP (India)

ABSTRACT

Reconfigurable systems offer a solution to solve complex problems by combining the speed of hardware with the

flexibility of software to improve performance and system performance. Past three decades have seen the

introduction of the technology that has radically changed the way one analyses and controls the world around

them. Exploiting computational precision can improve performance significantly without losing accuracy in

many applications. To enable this, we propose an innovative arithmetic logic unit (ALU) architecture that

supports true dynamic precision operations on the fly. As the operations become more complex the ALU also

become more complex, more expensive and takes up more space in the CPU hence power consumption is a

major issue. The VHDL coded synthesizable RTL code of the Fixed Point Arithmetic core has a complexity. We

verified the functions of the Fixed Point Arithmetic by a simulation with a single instruction test as the first step

and then implemented the Fixed Point Arithmetic with the FPGA. Nowadays to handle the more challenges and

complex task the demand of improving ability of a processor is increasing day by day which resulted in the more

numbers of components fabricated on a single chip according to the Moore Law.

I.INTRODUCTION

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that performs arithmetic and bitwise

operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on

floating point numbers. The Arithmetic Logic Unit (ALU) is a fundamental building block of the Central

Processing Unit (CPU) of a computer. Even one of the simplest microprocessor contains one ALU for purposes

such as maintaining timers. We can say that ALU is a core component of all central processing unit within in a

computer and is an integral part of the execution unit. An ALU is a fundamental building block of many types of

computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing

units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs. The inputs to an ALU are the data to be

operated on, called operands, and a code indicating the operation to be performed and, optionally, status

information from a previous operation; the ALU's output is the result of the performed operation. In many

designs, the ALU also exchanges additional information with a status register, which relates to the result of the

current or previous operations. Because ALUs can be built in so many ways with wide specifications the main

793 | P a g e

objective of the project is to have a working ALU that performs different arithmetic and logic functions for all

possible combinations of the inputs. The speed of ALU was not an issue and we wanted it to run at low power.

ALU is capable of calculating the results of a wide variety of basic arithmetical and logical computations. The

ALU takes as input the data to be operated on (called operands) and a code from the control unit indicating

which operation to perform. The output is the result of the computation. The ALU implemented will perform the

following operations:

 Arithmetic operations(addition, subtraction, increment, decrement, transfer).

 Logic operations (AND, NOT, OR, NAND, NOR, EX-OR, EX-NOR).

A digital system can be represented at different levels of abstraction [1]. This keeps the description and design

of complex systems manageable. The highest level of abstraction is the behavioral level that describes a system

in terms of what it does (or how it behaves) rather than in terms of its components and interconnection between

them. Here the 32- bit ALU is implemented by using the behavioral modeling style to describe how the

operation of ALU is being processed. This is accomplished by using a hardware description language VHDL.

The behavioral style makes use of a process statement. A process statement is the main construct in behavioral

modeling that allows using sequential statements to describe the behavior of a system over time. Process is

declared within architecture and is a concurrent statement. However, the statements inside a process are

executed sequentially. A process do read and write signals and values of the interface (input and output) ports to

communicate with the rest of the architecture just like other concurrent statements. In this paper, section II deals

with modeling style, block diagram, specifications and VHDL code for 32-bit ALU, section III presents

simulation results and discussion and section IV follows conclusions.

II.MIPS INSTRUCTION SET ARCHITECTURE

The instruction set can be categorized under three classifications in the MIPS ISA, these are:

 Register type (R),

 Immediate type (I) and

 Jump type (J).

Each instruction starts with a 6-Bit Op-code. Alongside these op-code, Register type (R) define 3 (three)

registers, Immediate type (I) instructions define2 (two) registers and a 16Bitevaluation; Jump type (J)

instructions have an op-code of 26Bit.

The following table demonstrates the three formats used for the MIPS core instruction set architecture.

I- Register (R) Type Instructions:

The instruction format illustrated in Fig. 1.is that of Register (R) Type. In it the Op-code is represented by the

last 6 bits. The 3 register types on which the operations are executed are Rs, Rt and Rd which are represented in

the above illustration by 15-bits that follow the Op-code. The starting or the source registers are Rs and Rt while

the ending or target register is Rd.

794 | P a g e

Register (R) Type Instructions

Succeeding 5-bits are the shift sum which betokens the number of bits that are to be moved. The final 6-bits

represent the function field points to the function which are to be executed on the registers.

II- Immediate (I) Type Instructions:

Immediate (I) type instructions are demonstrated in Fig.3. The four fields portrayed in this type of arrangement

represent - the Op-code, which is of 6-bitthat is utilized to select the Instruction type, storing of data is done in

the Source Register and Target Registers which are Rs and Rt respectively. Each are of 5-Bit. The final 16-bit

Address/Immediate Value field wielding prompt data.

Fig. Data Path for Immediate (I) type instructions.

III- Jump (J) type Instructions (Branch Format)

The instruction format shown in Fig. is that of Branch Type [1]. The two fields illustrated in this arrangement

type are the Op-code which is of 6-bit, utilized to choose the kind of instruction organization and Ending or

Target address of 26-bit, utilized to determine where the address has to be branched.

Fig. Data Path for Jump (J) type Instructions

795 | P a g e

The data path for Jump (J) type instruction is illustrated in Fig. The figure demonstrates that a 32-bit jump (J)

address is obtained when the last 4 bits of PC + 4 are attached to the shift left by 2 values of a 26-bit instruction

captured out from MEM. In addition, it jumps to the destination by omitting any alternate instruction.

III.MIPS ARCHITECTURE

The accompanying outline demonstrates the fundamental architecture of a MIPS-based framework:

Microprocessor without Interlocked Pipeline Stages (MIPS) is a RISC (Reduced Instruction Set Computing)

architecture. Pipelined MIPS has five stages which are IF, ID, EX, MEM and WB. Pipelining means several

operations in single data path at the same instant. Pipelining is used to enhance the capabilities of the RISC

processor which is the reason for its utilization in this type of computer architecture. A multi-cycle CPU

comprises of countless tasks. So if one task occurs, rather than waiting for the process to finish, at the same time

another task is initiated in the same data path simultaneously without interfering with the previous task. The

processes are thus divided into different pipelined stages. Following every clock a new operation is instigated in

the pipeline stage to which the process is being fed to. The triggering is done without causing any interruptions

to the past process. This makes simultaneous utilization of all stages in the data path possible. This thusly can

increment the throughput of MIPS.

5 Stage MIPS Architecture (Pipelined)

MIPS processor has been executed utilizing five pipeline stages, which are Instruction Fetch (IF), Instruction

Decode (ID), Execution (EX), Memory access (MEM) and Write Back (WB).The isolation of these stages is

achieved by special registers known as pipeline registers. The aim of these registers is to isolate the stages of the

instructions so that there is no inadmissible information because of various directions being executed all the

while. They are named in the middle of each of these: IF/ID Register, EX/MEM Register and MEM/WB

Register. The data path demonstrated in Fig. 8. is that of the MIPS pipelined processor.

796 | P a g e

3.1 Instruction Fetch (IF)

The command relayed to the Program Counter (PC) to fetch the instruction from the cache memory is what

instigates the primary pipelining operation of the IF stage. The storage of PC and Instruction for the successive

clock cycle is done in the IF/ID pipelined register as RAM (Random Access Memory)

IF Stage representation

IF stage for the most part relies on upon PC‟s represent value. On the basis of the PC value the processor gets

the instructions from the cache and followed by which the Program Counter value is incremented by 1. Thus,

the IF/ID register receives this information followed by which the information is relayed to the decoder unit.

The Instruction Fetch (IF) stage operation has been represented in Fig.

3.2 Instruction Decoder (ID)

The Op-code is relayed to the decoder unit at the instant when the instruction is obtained from the IF stage.

Instruction Decoder ID stage directs the controlling command to the various units of the MIPS processor

examining the Op-code of the instructions. Thus the procurement of data from the MIPS registers is carried out

by the Read register. The Branch unit is likewise incorporated into Instruction Decoder (ID) stage. The Input

data of ID stage is received from IF stage as shown in Fig. 8.This decoding stage includes four different

instructions: Register (R) type, Immediate (I)type, Jump (J) type and Input/Output (I/O) type instructions.

Depending upon these instructions the function will be performed utilizing above mentioned formats. Fig.10.

indicates Instruction Decode (ID) stage operation.

Instruction Decoder (ID)

3.3 Execute (EX)

Following the Instruction Decoder (ID), the instructions are sent to execute stage (EXE or EX). Execute (EX)

stage performs Arithmetic and Logical Unit (ALU) processes. Execution of operations is the fundamental aspect

of Execute (EX) stage, for instance arithmetic operations such as addition and difference and OR & AND. In

797 | P a g e

particular, EX/MEM pipelined register receives the result upon the execution of specific instructions (i.e. FP

ALU). Execute stage representation is shown in Fig.

3.4 Memory Access & Input/Output (MEM)

The storing and loading of values along with inputting and outputting data from the processor is the primary

function of the memory access (MEM) stage. The outcome will be dispatched to the WB stage in a scenario

where the instruction is neither memory nor IO instruction. After the result is figured the

primary function is to store the data values in the destination register. The Memory Access

(MEM) stage operation is demonstrated in Figure.

3.5 Write Back (WB)

As per Figure the Write-Back (WB) operation is the final stage of the RISC based MIPS architecture which

composes the result, store information and input data from and to the register files.

Writing the data that has been fetched from the MIPS register to the target register is the main aim of this stage.

IV.PIPELINED ARCHITECTURE

In digital applications, pipelining is the most common parallel scheme used to improve the throughput. A

complex task is divided into subtasks which are implemented independently in their respective execution stages.

It is required that the output of each subtask become available to the subsequent unit as and when needed.

Pipelining is a powerful way of improving the throughput of digital systems. The single-cycle processor is

upgraded to pipelined processor by subdividing the single-cycle processor into five pipeline stages. Thus five

instructions are executed simultaneously, one in each stage. Ideally, the clock frequency is almost five times

faster because each stage has only one-fifth of the entire logic. Since reading, writing the memory, register file,

and using the ALU typically constitutes the biggest delays in processor, the pipeline stages are chosen so that

each stage involves exactly one of these slow steps.

798 | P a g e

The five pipelined stages can be described as follows: Fetch: the processor reads the instruction from

instruction memory.

 Decode: processor reads the source operands from the register file and decodes

 The instruction to produce the control signal Execute: performs the computation with the ALU.

 Memory: processor reads from or writes into the data memory.

 Write back: processor writes the result to the register file when applicable.

 Each instruction is thus broken up into a series of steps, and several steps of different instructions are executed

simultaneously, improving the throughput significantly.

4.1 Pipelined Data path

The single-cycle processor is converted into the pipelined processor by adding registers. Figure shows the

pipelined data path formed by inserting four pipeline registers to separate the data path into five stages. In

pipelining, all signals associated with a particular instruction must advance through the pipeline in unison. We

observe that the write back to the register file gets the data from Result W and hence, the address signal Write

Reg has to be pipelined along through the memory to remain in sync.

Pipelined data path.

799 | P a g e

Pipelined Control Unit Control signals for pipelined processor are same as the single-cycle processor and hence,

control unit is the same. The op-code and function fields of the instruction are examined in the decode stage by the

control unit to produce the control signals.

Pipelined processor with control.

They must be pipelined along with the data to remain synchronized with instruction. Figure shows the control and

data unit for pipelined architecture.

All the programs running on the MIPS use the same instruction set. Instructions indicate both the operations to

perform and the operands to use. The operands may be read from memory, from registers, or from the

instruction itself. Representation of the instructions in a symbolic format is called assembly language.

Instruction operates on operands and these operands can be stored in registers, memory, or they can be constants

stored in the instruction itself. Registers are used for quick access to operand but they hold relatively a small

amount of data. Additional data can be stored in a large data memory, which can be relatively slow. MIPS is a

32-bit architecture because operands are 32-bit data.

V.SIMULATIONS AND RESULTS

As per the design, the Write-Back (WB) operation writes back the result, stores the information and inputs the

information to the Register file and vice-versa. For instance, the result is given by ADD Rd, Rs, Rt instructions.

It is analogous to the Feedback operation in various engineering systems. The Register Transfer Logic as

illustrated in Fig. 14. is that of 32-Bit RISC based MIPS Processor [2]. It contains Instruction decoder (ID) unit,

800 | P a g e

Instruction Fetch (IF) unit, memory unit (MEM) and execution unit (EX). In this process, the program counter

(PC) is utilized while fetching the Op-code from Instruction Fetch (IF) stage and sending the code to Instruction

Decode (ID) stage. Instruction Fetch (IF) stage receives the Op-code from the ID unit which is then sent for

execution in the EX stage. The instruction configuration chosen is dependent on the Op-code. The execution of

the instruction in the EX stage occurs in accordance with the assigned Op-code. Storage of Op-code to the

memory and fetching it from the memory is the primary task of the memory unit.

In this paper we are looking into the ASIP performance results, Xilinx ISE and XST Synthesis tools. The register

transfer level (RTL) description of the ASIP micro-architecture is designed and simulated in VHDL using Xilinx

ISE design suit and basic functionality is verified using the assembly codes and results are verified.

Low Power Technique:

There are several different RTL and gate-level design strategies for reducing power. In the present work, Clock

Gating design is used for reducing dynamic power. In this method, clock is applied to only the modules that are

working at that instant [11]. Clock gating is a dynamic power reduction method in which the clock signals are

stopped for selected registers banks during the time when the stored logic values are not changing. The clock

pulse for low power technique is shown in Fig. 3. The input to low power unit is global clock and its output is

gated clock, since the module will block the main clock in the following conditions.

 When instruction is halt.

 When there is a continuous Nop operation.

 When program counter fails to increment.

Add Module FP 32 bit ALU Multiplication module of FP 32 bit ALU

801 | P a g e

Divide module of FP 32 bit ALU Resp module of FP 32 bit ALU

FP 32 bit basic structure of ALU

VI.CONCLUSION AND FUTURE WORK

This paper demonstrates quad fixed point arithmetic processor with 32 bit data processing capability is

implemented. Quad Fixed Point 32-bit Arithmetic Core implements a full customizable arithmetic core using the

Quad Fixed Point 32-bit. Available arithmetic operations are easily configured by an generic flag. Benefits are

much less area requirements lesser pipeline depth and higher speed compared to an FPU at the cost that the

number range is limited from +- 2^(-24) to 2^29.

 The processor for this thesis is built from the pipelined MIPS processor micro-architecture and is initially

designed in VHDL and verified. Since the real number representation on the processor is fixed-point, the VHDL

simulations are further modified with fixed-point library. The required optimization in the MIPS pipelined

processor to support the wireless communication applications are studied in detail. The MIPS processor ALU is

enhanced to support real numbers using fixed point arithmetic. Addition, subtraction, multiplications, and

inversion are the listed operations to achieve ALU algorithms. Block wise method of implementation is

802 | P a g e

employed for addition, subtraction, multiplication. Performance of Design are compared with fixed-point other

simulation results. Fixed-point ALU using Newton-Raphson division and block wise analytical inversion

algorithms achieve precession error in the range 10-5. The design is further synthesized and results indicate the

max frequency of 101 MHz. Load word (lw) instruction is used to fetch the data into register file, which is the

slowest instruction. Loading the back-to-back data from concurrent memory locations into the register file using

a single new instruction is another suggested scope for improvement.

This research paper outlines a 32-bit Microprocessor without Interlocked Pipeline Stages (MIPS) based RISC

processor is executed effectively with pipelining. In a five stage pipelining system the execution of each

direction occurs in a single clock cycle. This design demonstrates the usage of MIPS based CPU equipped for

taking care of different Register type, Jump type and immediate type of instructions and each of these

classifications has a diverse configuration.

REFERENCES

[1.] Pranjali S. Kelgaonkar, Prof. ShilpaKodgire, “Design of 32 Bit MIPS RISC Processor Based on Soc”,

International Journal of Latest Trends in Engineering and Technology (IJLTET), January 2016.

[2.] Ramandeep Kaur, Anuj, “8 Bit RISC Procesor Using Verilog HDL”, Int. Journal if Engineering Research

and Applications, March 2014.

[3.] PreetamBhosle, Hari Krishna Moorth, “FPGA Implementation of low power pipeline 32-bit RISC

Proessor”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), August 2014.

[4.] Gautham P, Parthasarathy R, Karthi, Balasubramanian, “Low Power Pipelined MIPS Processor Design”,

in the proceedings of the 2009, 12th international symposium, 2009 pp. 462-465.

[5.] Neenu Joseph, Sabarinath S, “FPGA based Implementation of High Performance Architectural level Low

Power 32-bit RISC Core”, 2009 IEEE.

[6.] “Computer Organization and Design- the hardware/software interface”, 3rd edition by David A. Patterson

and John L. Hennessy, pp. 370-412.

[7.] Mrs. RupaliBalpande, Mrs. RashmiKeote, “Design of FPGA based Instruction Fetch & Decode Module of

32-bit RISC (MIPS) Processor”, International Conference on Communication Systems and Network

Technologies, 978-0-7695-4437-3/11, 2011 IEEE.

[8.] Harpreet Kaur, Nitika Gulati, “Pipelined MIPS with Improved Datapath”, IJERA, Vol. 3, Issue 1, January

–

February 2013, pp. 762-765.

[9.] Accuracy-aware processor customisation for fixed-point arithmetic Shervin Vakili ✉, J.M. Pierre

Langlois, Guy Bois IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11

[10.] J. Kurzak and J. Dongarra, "Implementation of mixed precision in solving systems of linear equations on

the Cell processor: Research Articles," Concurr. Comput. : Pract. Exper., vol. 19, pp. 1371-1385, 2007.

[11.] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra, "Exploiting the performance of

32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems),"

presented at the Proceedings of the 2006 ACM/IEEE conference on Supercomputing, Tampa, Florida, 2006.

803 | P a g e

[12.] J. Lee and G. D. Peterson, "Iterative Refinement on FPGAs,"in Application Accelerators in High-

Performance Computing (SAAHPC), 2011 Symposium on, 2011, pp. 8-13.

[13.] A. R. Lopes, A. Shahzad, G. A. Constantinides, and E. C.Kerrigan, "More flops or more precision?

Accuracy parameterizable linear equation solvers for model predictive control," in IEEE Symposium on Field

Programmable Custom Computing Machines, Napa, California, 2009.

[14.] J. Sun, G. D. Peterson, and O. O. Storaasli, "High-Performance Mixed-Precision Linear Solver for

FPGAs,"IEEE Trans. Comput., vol. 57, pp. 1614-1623, 2008.

[15.] Yiannacouras, P., Steffan, J.G., Rose, J.: „Exploration and customization of FPGA-based soft processors‟,

IEEE Trans. Comput.-Aided Design Int. Circuits Syst., 2007, 26, (2), pp. 266–277

[16.] Mishra, P., Dutt, N.: „Architecture description languages for programmable embedded systems‟, IEE Proc.

Comput. Digit. Tech., 2005, 152, (3), pp. 285–297

[17.] Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constantinides, G. A.: „Accuracy-

guaranteed bit-width optimization‟, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2006, 25, (10),

pp. 1990–2000

[18.] Yu, P., Radecka, K., Zilic, Z.: „An efficient method to perform range analysis for DSP circuits‟. Int. Conf.

on Electronics, Circuits, and Systems (ICECS), December 2010, pp. 855–858

[19.] Vakili, S., Langlois, J.M.P., Bois, G.: „Customised soft processor design: a compromise between

architecture description languages and parameterisable processors‟, IET Comput. Digit. Tech., 2013, 7, (3), pp.

122–131

[20.] Cong, J., Gururaj, K., Liu, B., et al.: „Evaluation of static analysis techniques for fixed-point precision

optimization‟. IEEE Symp. on Field Programmable Custom Computing Machines, 2009, pp. 231–234.

[21.] Le Gal, B., Casseau, E.: „Word-length aware DSP hardware design flow based on high-level synthesis‟, J.

Signal Process. Syst., 2011, 62, (3), pp. 341–357.

[22.] Menard, D., Herve, N., Sentieys, O., Nguyen, H.N.: „High-Level synthesis under fixed-point accuracy

constraint‟, J. Electr. Comput. Eng., 2012, pp.

[23.] Vakili, S., Langlois, J.M.P., Bois, G.: „Finite-precision error modeling using affine arithmetic‟. IEEE Int.

Conf. on Acoustics, Speech and Signal Processing

(ICASSP), May 2013, pp. 2591–2595.

