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ABSTRACT  

Reconfigurable systems offer a solution to solve complex problems by combining the speed of hardware with the 

flexibility of software to improve performance and system performance. Past three decades have seen the 

introduction of the technology that has radically changed the way one analyses and controls the world around 

them. Exploiting computational precision can improve performance significantly without losing accuracy in 

many applications. To enable this, we propose an innovative arithmetic logic unit (ALU) architecture that 

supports true dynamic precision operations on the fly. As the operations become more complex the ALU also 

become more complex, more expensive and takes up more space in the CPU hence power consumption is a 

major issue. The VHDL coded synthesizable RTL code of the Fixed Point Arithmetic core has a complexity. We 

verified the functions of the Fixed Point Arithmetic by a simulation with a single instruction test as the first step 

and then implemented the Fixed Point  Arithmetic with the FPGA. Nowadays to handle the more challenges and 

complex task the demand of improving ability of a processor is increasing day by day which resulted in the more 

numbers of components fabricated on a single chip according to the Moore Law. 

 

I.INTRODUCTION 

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that performs arithmetic and bitwise 

operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on 

floating point numbers. The Arithmetic Logic Unit (ALU) is a fundamental building block of the Central 

Processing Unit (CPU) of a computer. Even one of the simplest microprocessor contains one ALU for purposes 

such as maintaining timers. We can say that ALU is a core component of all central processing unit within in a 

computer and is an integral part of the execution unit. An ALU is a fundamental building block of many types of 

computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing 

units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs. The inputs to an ALU are the data to be 

operated on, called operands, and a code indicating the operation to be performed and, optionally, status 

information from a previous operation; the ALU's output is the result of the performed operation. In many 

designs, the ALU also exchanges additional information with a status register, which relates to the result of the 

current or previous operations.  Because ALUs can be built in so many ways with wide specifications the main 
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objective of the project is to have a working ALU that performs different arithmetic and logic functions for all 

possible combinations of the inputs. The speed of ALU was not an issue and we wanted it to run at low power.  

ALU is capable of calculating the results of a wide variety of basic arithmetical and logical computations. The 

ALU takes as input the data to be operated on (called operands) and a code from the control unit indicating 

which operation to perform. The output is the result of the computation. The ALU implemented will perform the 

following operations:  

 Arithmetic operations(addition, subtraction, increment, decrement, transfer). 

 Logic operations (AND, NOT, OR, NAND, NOR, EX-OR, EX-NOR).  

A digital system can be represented at different levels of abstraction [1]. This keeps the description and design 

of complex systems manageable. The highest level of abstraction is the behavioral level that describes a system 

in terms of what it does (or how it behaves) rather than in terms of its components and interconnection between 

them. Here the 32- bit ALU is implemented by using the behavioral modeling style to describe how the 

operation of ALU is being processed. This is accomplished by using a hardware description language VHDL. 

The behavioral style makes use of a process statement. A process statement is the main construct in behavioral 

modeling that allows using sequential statements to describe the behavior of a system over time. Process is 

declared within architecture and is a concurrent statement. However, the statements inside a process are 

executed sequentially. A process do read and write signals and values of the interface (input and output) ports to 

communicate with the rest of the architecture just like other concurrent statements. In this paper, section II deals 

with modeling style, block diagram, specifications and VHDL code for 32-bit ALU, section III presents 

simulation results and discussion and section IV follows conclusions. 

 

II.MIPS INSTRUCTION SET ARCHITECTURE 

The instruction set can be categorized under three classifications in the MIPS ISA, these are:  

 Register type (R),  

 Immediate type (I) and  

 Jump type (J).  

Each instruction starts with a 6-Bit Op-code. Alongside these op-code, Register type (R) define 3 (three) 

registers, Immediate type (I) instructions define2 (two) registers and a 16Bitevaluation; Jump type (J) 

instructions have an op-code of 26Bit. 

The following table demonstrates the three formats used for the MIPS core instruction set architecture. 

 

I- Register (R) Type Instructions: 

The instruction format illustrated in Fig. 1.is that of Register (R) Type. In it the Op-code is represented by the 

last 6 bits. The 3 register types on which the operations are executed are Rs, Rt and Rd which are represented in 

the above illustration by 15-bits that follow the Op-code. The starting or the source registers are Rs and Rt while 

the ending or target register is Rd. 
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Register (R) Type Instructions 

Succeeding 5-bits are the shift sum which betokens the number of bits that are to be moved. The final 6-bits 

represent the function field points to the function which are to be executed on the registers. 

II- Immediate (I) Type Instructions: 

Immediate (I) type instructions are demonstrated in Fig.3. The four fields portrayed in this type of arrangement 

represent - the Op-code, which is of 6-bitthat is utilized to select the Instruction type, storing of data is done in 

the Source Register and Target Registers which are Rs and Rt respectively. Each are of 5-Bit. The final 16-bit 

Address/Immediate Value field wielding prompt data. 

 

Fig. Data Path for Immediate (I) type instructions. 

III- Jump (J) type Instructions (Branch Format) 

The instruction format shown in Fig. is that of Branch Type [1]. The two fields illustrated in this arrangement 

type are the Op-code which is of 6-bit, utilized to choose the kind of instruction organization and Ending or 

Target address of 26-bit, utilized to determine where the address has to be branched. 

 

Fig. Data Path for Jump (J) type Instructions 
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The data path for Jump (J) type instruction is illustrated in Fig. The figure demonstrates that a 32-bit jump (J) 

address is obtained when the last 4 bits of PC + 4 are attached to the shift left by 2 values of a 26-bit instruction 

captured out from MEM. In addition, it jumps to the destination by omitting any alternate instruction. 

 

III.MIPS ARCHITECTURE 

The accompanying outline demonstrates the fundamental architecture of a MIPS-based framework: 

Microprocessor without Interlocked Pipeline Stages (MIPS) is a RISC (Reduced Instruction Set Computing) 

architecture. Pipelined MIPS has five stages which are IF, ID, EX, MEM and WB. Pipelining means several 

operations in single data path at the same instant. Pipelining is used to enhance the capabilities of the RISC 

processor which is the reason for its utilization in this type of computer architecture. A multi-cycle CPU 

comprises of countless tasks. So if one task occurs, rather than waiting for the process to finish, at the same time 

another task is initiated in the same data path simultaneously without interfering with the previous task. The 

processes are thus divided into different pipelined stages. Following every clock a new operation is instigated in 

the pipeline stage to which the process is being fed to. The triggering is done without causing any interruptions 

to the past process. This makes simultaneous utilization of all stages in the data path possible. This thusly can 

increment the throughput of MIPS. 

 

 

5 Stage MIPS Architecture (Pipelined) 

 

MIPS processor has been executed utilizing five pipeline stages, which are Instruction Fetch (IF), Instruction 

Decode (ID), Execution (EX), Memory access (MEM) and Write Back (WB).The isolation of these stages is 

achieved by special registers known as pipeline registers. The aim of these registers is to isolate the stages of the 

instructions so that there is no inadmissible information because of various directions being executed all the 

while. They are named in the middle of each of these: IF/ID Register, EX/MEM Register and MEM/WB 

Register. The data path demonstrated in Fig. 8. is that of the MIPS pipelined processor. 
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3.1 Instruction Fetch (IF)  

The command relayed to the Program Counter (PC) to fetch the instruction from the cache memory is what 

instigates the primary pipelining operation of the IF stage. The storage of PC and Instruction for the successive 

clock cycle is done in the IF/ID pipelined register as RAM (Random Access Memory) 

 

IF Stage representation 

 

IF stage for the most part relies on upon PC‟s represent value. On the basis of the PC value the processor gets 

the instructions from the cache and followed by which the Program Counter value is incremented by 1. Thus, 

the IF/ID register receives this information followed by which the information is relayed to the decoder unit. 

The Instruction Fetch (IF) stage operation has been represented in Fig. 

  

3.2 Instruction Decoder (ID) 

The Op-code is relayed to the decoder unit at the instant when the instruction is obtained from the IF stage. 

Instruction Decoder ID stage directs the controlling command to the various units of the MIPS processor 

examining the Op-code of the instructions. Thus the procurement of data from the MIPS registers is carried out 

by the Read register. The Branch unit is likewise incorporated into Instruction Decoder (ID) stage. The Input 

data of ID stage is received from IF stage as shown in Fig. 8.This decoding stage includes four different 

instructions: Register (R) type, Immediate (I)type, Jump (J) type and Input/Output (I/O) type instructions. 

Depending upon these instructions the function will be performed utilizing above mentioned formats. Fig.10. 

indicates Instruction Decode (ID) stage operation. 

 

Instruction Decoder (ID) 

 

3.3 Execute (EX)  

Following the Instruction Decoder (ID), the instructions are sent to execute stage (EXE or EX). Execute (EX) 

stage performs Arithmetic and Logical Unit (ALU) processes. Execution of operations is the fundamental aspect 

of Execute (EX) stage, for instance arithmetic operations such as addition and difference and OR & AND. In 
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particular, EX/MEM pipelined register receives the result upon the execution of specific instructions (i.e. FP 

ALU). Execute stage representation is shown in Fig. 

 

3.4 Memory Access & Input/Output (MEM) 

The storing and loading of values along with inputting and outputting data from the processor is the primary 

function of the memory access (MEM) stage. The outcome will be dispatched to the WB stage in a scenario 

where the instruction is neither memory nor IO instruction. After the result is figured the 

primary function is to store the data values in the destination register. The Memory Access 

(MEM) stage operation is demonstrated in Figure. 

 

 

3.5 Write Back (WB) 

As per Figure the Write-Back (WB) operation is the final stage of the RISC based MIPS architecture which 

composes the result, store information and input data from and to the register files.  

 

Writing the data that has been fetched from the MIPS register to the target register is the main aim of this stage. 

IV.PIPELINED ARCHITECTURE  

In digital applications, pipelining is the most common parallel scheme used to improve the throughput. A 

complex task is divided into subtasks which are implemented independently in their respective execution stages. 

It is required that the output of each subtask become available to the subsequent unit as and when needed. 

Pipelining is a powerful way of improving the throughput of digital systems. The single-cycle processor is 

upgraded to pipelined processor by subdividing the single-cycle processor into five pipeline stages. Thus five 

instructions are executed simultaneously, one in each stage. Ideally, the clock frequency is almost five times 

faster because each stage has only one-fifth of the entire logic. Since reading, writing the memory, register file, 

and using the ALU typically constitutes the biggest delays in processor, the pipeline stages are chosen so that 

each stage involves exactly one of these slow steps.  
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The five pipelined stages can be described as follows:  Fetch: the processor reads the instruction from 

instruction memory. 

  Decode: processor reads the source operands from the register file and decodes 

 The instruction to produce the control signal Execute: performs the computation with the ALU. 

  Memory: processor reads from or writes into the data memory. 

  Write back: processor writes the result to the register file when applicable. 

 Each instruction is thus broken up into a series of steps, and several steps of different instructions are executed 

simultaneously, improving the throughput significantly.  

4.1 Pipelined Data path 

The single-cycle processor is converted into the pipelined processor by adding registers. Figure shows the 

pipelined data path formed by inserting four pipeline registers to separate the data path into five stages. In 

pipelining, all signals associated with a particular instruction must advance through the pipeline in unison. We 

observe that the write back to the register file gets the data from Result W and hence, the address signal Write 

Reg has to be pipelined along through the memory to remain in sync.  

 

Pipelined data path. 
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Pipelined Control Unit Control signals for pipelined processor are same as the single-cycle processor and hence, 

control unit is the same. The op-code and function fields of the instruction are examined in the decode stage by the 

control unit to produce the control signals. 

 

Pipelined processor with control. 

They must be pipelined along with the data to remain synchronized with instruction. Figure shows the control and 

data unit for pipelined architecture. 

 

All the programs running on the MIPS use the same instruction set. Instructions indicate both the operations to 

perform and the operands to use. The operands may be read from memory, from registers, or from the 

instruction itself. Representation of the instructions in a symbolic format is called assembly language. 

Instruction operates on operands and these operands can be stored in registers, memory, or they can be constants 

stored in the instruction itself. Registers are used for quick access to operand but they hold relatively a small 

amount of data. Additional data can be stored in a large data memory, which can be relatively slow. MIPS is a 

32-bit architecture because operands are 32-bit data. 

V.SIMULATIONS AND RESULTS  

As per the design, the Write-Back (WB) operation writes back the result, stores the information and inputs the 

information to the Register file and vice-versa. For instance, the result is given by ADD Rd, Rs, Rt instructions. 

It is analogous to the Feedback operation in various engineering systems. The Register Transfer Logic as 

illustrated in Fig. 14. is that of 32-Bit RISC based MIPS Processor [2]. It contains Instruction decoder (ID) unit, 
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Instruction Fetch (IF) unit, memory unit (MEM) and execution unit (EX). In this process, the program counter 

(PC) is utilized while fetching the Op-code from Instruction Fetch (IF) stage and sending the code to Instruction 

Decode (ID) stage. Instruction Fetch (IF) stage receives the Op-code from the ID unit which is then sent for 

execution in the EX stage. The instruction configuration chosen is dependent on the Op-code. The execution of 

the instruction in the EX stage occurs in accordance with the assigned Op-code. Storage of Op-code to the 

memory and fetching it from the memory is the primary task of the memory unit. 

In this paper we are looking into the ASIP performance results, Xilinx ISE and XST Synthesis tools. The register 

transfer level (RTL) description of the ASIP micro-architecture is designed and simulated in VHDL using Xilinx 

ISE design suit and basic functionality is verified using the assembly codes and results are verified. 

Low Power Technique:  

There are several different RTL and gate-level design strategies for reducing power. In the present work, Clock 

Gating design is used for reducing dynamic power. In this method, clock is applied to only the modules that are 

working at that instant [11]. Clock gating is a dynamic power reduction method in which the clock signals are 

stopped for selected registers banks during the time when the stored logic values are not changing. The clock 

pulse for low power technique is shown in Fig. 3. The input to low power unit is global clock and its output is 

gated clock, since the module will block the main clock in the following conditions. 

 When instruction is halt. 

 When there is a continuous Nop operation. 

 When program counter fails to increment.    

 

Add Module FP 32 bit ALU                     Multiplication module of FP 32 bit ALU 
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Divide module of FP 32 bit ALU    Resp module of FP 32 bit ALU 

 

FP 32 bit basic structure of ALU 

VI.CONCLUSION AND FUTURE WORK  

This paper demonstrates quad fixed point arithmetic processor with 32 bit data processing capability is 

implemented. Quad Fixed Point 32-bit Arithmetic Core implements a full customizable arithmetic core using the 

Quad Fixed Point 32-bit. Available arithmetic operations are easily configured by an generic flag. Benefits are 

much less area requirements lesser pipeline depth and higher speed compared to an FPU at the cost that the 

number range is limited from +- 2^(-24) to 2^29.  

 The processor for this thesis is built from the pipelined MIPS processor micro-architecture and is initially 

designed in VHDL and verified. Since the real number representation on the processor is fixed-point, the VHDL 

simulations are further modified with fixed-point library. The required optimization in the MIPS pipelined 

processor to support the wireless communication applications are studied in detail. The MIPS processor ALU is 

enhanced to support real numbers using fixed point arithmetic. Addition, subtraction, multiplications, and 

inversion are the listed operations to achieve ALU algorithms. Block wise method of implementation is 
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employed for addition, subtraction, multiplication. Performance of Design are compared with fixed-point other 

simulation results. Fixed-point ALU using Newton-Raphson division and block wise analytical inversion 

algorithms achieve precession error in the range 10-5. The design is further synthesized and results indicate the 

max frequency of 101 MHz. Load word (lw) instruction is used to fetch the data into register file, which is the 

slowest instruction. Loading the back-to-back data from concurrent memory locations into the register file using 

a single new instruction is another suggested scope for improvement. 

This research paper outlines a 32-bit Microprocessor without Interlocked Pipeline Stages (MIPS) based RISC 

processor is executed effectively with pipelining. In a five stage pipelining system the execution of each 

direction occurs in a single clock cycle. This design demonstrates the usage of MIPS based CPU equipped for 

taking care of different Register type, Jump type and immediate type of instructions and each of these 

classifications has a diverse configuration. 
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