

1945 | P a g e

An Empirical Study to Boost the Performance of Android

Applications Graphical User Interface (GUI)

Dr. Mesfin Abebe

Adama Science and Technology University

School of Electrical Engineering and Computering

Department of Computer Science and Engineeing

Adama, Ethiopia

ABSTRACT

The Android platform is the most dominant technologies in the mobile markets. Currently, there are around 2.8

millions Android applications on Google Play Store. These applications have a wide range of functionalities

such as Business, Education, Travel, Entertainment, Shopping, Game, and Weather etc. However, most of these

applications have performance problem with their Graphical User Interfaces (GUIs) due to the daunting and

expensive testing process. In this study, we inspected the severity of the Android applications GUI performance

problem by examining a sample of freely downloadable applications from Google Play Store. Following the

identification of the problems, we applied possible performance improving techniques and best practices. The

suggested techniques are applied on few of the sample applications layouts (screens) to examine the

performance improvement. The result indicated that GUI performance is a common problem in Android

applications, which can be enhanced by simply using the best practices and the Android SDK tools.

Key words: Android applications, Android tool, performance improvement, performance test, user

interface.

I. INTRODUCTION

Currently, Android platform and its applications are the dominant in the mobile market with 80 percent market

share [1]. In terms of the number of applications available for download, Google play has many free and paid

applications than the other applications stores. These applications cover a wide range of functionality such as

Games, Social, Sports, Business, Education, Entertainment, Weather etc. For instance, in June 2015 Game

applications were the highest in number on the store with a 10.33 percent. Usually, the number of Android

applications downloaded each year increase from time to time; for example more than 100 billion applications

are downloaded from Google Play until 2015 summer [2].

Android is not only an operating system, but also a complete set of software that facilitates the development of

the Android applications [3]. The Android SDK (Software Development Kit) that includes tools, platform, and

1946 | P a g e

other components into packages supports the developers in the Android applications development process.

Simultaneously, evaluating the performance of an application is critical activity in application development [4].

Most importantly, the user interface performance has a profound effect on the overall performance of the

applications. Hence, developers have to ensure their applications GUIs performance to confirm that the

functionalities are aligned with the quality standards.

Though there are similarities between mobile application and conventional software development, Android

application development is by far different. Android applications have to run on devices with limited memory,

CPU processing speed, power supply and network connectivity. Hence, developers have to consider all these

constraints during the design and development stage [5]. Generally, it is frequently necessary to debug, test and

optimize their applications to enhance and maintain the GUI performance. Testing the applications with the

worst and best possible configuration such as screen resolution, pixel density etc. is very important to minimize

the problems [4].

In addition to the limitation with the hardware devices, the complexity of the Android platform and the

functionality it supports constantly increase these days [6]. But, the urge to release the applications to the market

dare the developers to allot time and effort for performance improvement. Moreover, the majority of the

developers are not well-trained to apply existing techniques, methods and concepts to develop quality

applications. Considering all these, we analyzed ten free downloadable Android applications from Google Play

Store. The samples have different sizes and types. Our study identified that GUI performance is a common

problem in most of the applications. This result is compliant with a previous research finding that said “one in

five Android users experiences application crush” [7].

The remaining parts of the study are structured as follows: Section 2: explains literatures related to the study.

Section 3: describes the methodology and procedure of the study. Sections 4: presents and discusses the results.

Finally, Section 5: states the conclusion and proposes areas for future study.

II. LITERATURE REVIEW

There are various studies to facilitate the development of the GUIs of mobile applications. Domenico

Amalfitano et al. [8] developed a tool that tests the GUIs of an Android application. The tool detects faults to

support the structural exploration of the application. Frequently, one of the most common defects in Android

application is poor responsiveness. In this regard, a study proposed a systematic technique to uncover and

quantify the common causes of poor responsiveness [9]. The researchers applied their proposed approach on

eight open-source applications and discovered sixty-one poor responsiveness problems that are caused by

inappropriate resource usage.

In order to reduce the development cost, time and to reach out a wide range of users; Isabelle Dalmasso et al

[10] suggested several criteria to choose suitable cross platform tool. Alternatively, to identify the importance of

software engineering concepts in mobile applications; researchers studied the development methodologies,

1947 | P a g e

tools, user interface design, application quality and security of mobile application [11]. The result revealed that

there are a large number of complex issues in mobile applications, which need further investigation. Jiany Liu

and Jiankun Yu [12] established a guidance to illustrate the underpinning operation of Android platform using a

simple music player Android application as a case study.

Android application testing has drawn an extensive attention to assure the required quality. Chien Hung Liu et al

[13] proposed an approach to automate the testing of Android applications. In addition, Cuixiong Hu and Lulian

Neamitiu [14] presented an automating testing process that focus on GUI bugs. They determine the nature and

frequently of the GUI bug using automatically generated test cases. However, the main purpose of this study is

to identify the GUI performance problems of an Android application and to prove that how the best practices

and the Android SDK tools can solve the problems.

III. METHOD AND PROCEDURE OF THE STUDY

This section presents the procedure of the study used to investigate the GUIs performance problems and to

implement the best practices and the Android SDK tools. The study includes the following steps:

 Downloading the sample Android applications (apk) from Google Play Store.

 Extracting the source code and XML files.

 Import the source code and XML files to Android Studio IDE.

 Analyzing the applications GUI performance using the Android SDK tools.

 Identify the possible solutions (best practices) to solve the GUI performance problems.

 Experiment the identified solutions on a sample of layouts (screens)

 Evaluate the performance improvement as the result of the proposed solutions.

3.1 Extraction of the Sample Applications

Ten (10) Android applications are downloaded from Google Play Store. The applications are taken from

different categories such as: business, communication, education, entertainment, and Shopping as shown in

Table 1. The sample applications are free downloadable that have high download rate.

Table 1. List of the sample Android applications for the study

No Name of the Apps Package name for downloading Size MB

Business

1 LINK@App (LINEat) com.linecorp.lineat.android 20.050

2 Facebook Pages Manger com.facebook.pages.app 30.829

Communication

3 KakaoTalk: Free Calls & Text com.kakao.talk 23.139

1948 | P a g e

4 Telegram org.telegram.messenger 11.929

Education

5 CLASSTING com.Classting 7.105

6 PororoCon com.weplli.project.pororocon 14.946

Entertainment

7 Akinator the Genie FREE com.digidust.elokence.akinator.freemium 33.901

8 MagicBook: Hearthstone com.nekmit.magichearthstone 30.930

Shopping

9 Bee’nGo – Loyalty & Coupons com.mobeam.beepngo 9.392

10 WHAFF Rewards com.whaff.whaffapp 10.857

Next, the sample apk are extracted to access the Java source code and the XML files of the sample applications.

To extract the apk files into Java source code and XML files, we used the following four software tools:

DEX2Jar, Java Decompiler, APK Tool and APK Installer. The extracted Java source code and XML files

imported to the Android studio IDE for further GUIs performance analysis and applying the best practices.

Table 2. The Overdraw analysis result of the sample applications [16]

No Overdraw Description # Screens

1 No overdraw (True color) No overdraw 7

2 1X Overdraw (Blue color) Overdraw once 32

3 2X Overdraw (Green color) Overdraw twice 47

4 3X Overdraw (Pink color) Overdraw three times 196

5 4X+ Overdraw (Red color) Overdraw four or more times 94

Total Number of layouts (Screens) 376

The sample applications GUIs are examined for overdraw using the Android Studio IDE. Overdraw describes

how many times each pixel redrawn during rendering period to build the views on the screen. The overdraw test

allow us to validate the amount of overdraw and determine the performance of the user interfaces. To do this,

we have turned on the GPU overdraw debug setting; since it is off by default. The overdraw test indicated that

the sample applications have different level of overdraw problems as summarized in Table 2. Furthermore, we

used the GUP rendering to measure how long the applications take to render all the GUI elements using the

Profiling GPU rendering tool. The result of the two experiments showed that many of the applications screens

need performance tuning to minimize the high overdraw to an acceptable level of 1X Overdraw and to keep the

rendering activity within the 16ms/frame which is the best practice.

1949 | P a g e

3.2 Analyzing the Applications Performance

A good graphical user interface design should consider a number of issues such as Functionality, Layout

Design, and Interaction [1]. For this, we used the Lint static code analysis tool to analyze the applications for

potential bugs. The tool has the ability to indicate poorly structured code that can affect the reliability and

efficiency of the applications. For instance, XML resource that has unused namespace consumes space and

unnecessary processing time. In addition, deprecated elements or APIs might fail to achieve the functionality of

the application. Hence, the tool can tell us how the sample applications developers are effectively used this tool

to optimize their applications. Table 3 shows the average result of the Lint tool analysis of the sample

applications.

Table 3. The result of analysis using the Android Studio Lint

No Types of Problems Total Frequency Percentage

1 Android Lint 180 11.60%

2 Class Structure 25 1.61%

3 Declaration redundancy 260 16.75%

4 General 63 4.06%

5 Imports 27 1.74%

6 Spellings 517 33.31%

7 Verbose or redundant code constructs 47 3.03%

8 XML 433 27.90%

3.3 Best Practice in Android Development

It is essential to justify how it is simple, but worthy to use the available tools, techniques and best practices of

Android to improve the GUIs performance. Consequently, we took a sample of five layouts (screens) with their

related activity classes from the ten sample applications to deeply analyze their performance problem. Then, we

applied some of the best practices, tools and techniques to improvement the GUIs performance. Finally, we

evaluated the GUIs and rendering performance of the five layouts using the Hierarchy Viewer tool.

As we observed from the Hierarch Viewer, the views are deeply nested and need improvement with their GUIs

performance. This indicates that most developers give less attention to GUIs performance improvement.

However, these problems can be fixed easily by applying the following best practices and using the Android

SDK tools. In this study, we focused on Overdraw problem using the following best practice.

 Removing unnecessary backgrounds declaration: this can be done in two ways; by nullified the window

background programmatically or removing the unnecessary backgrounds declaration from the XML file. This

best practice can optimize the Layout Hierarchies and minimize redundant background (overdraws).

1950 | P a g e

3.4 Applying the Best Practice

In this section, we explained the experimentation of the best practice and the use of the Android Studio tools.

According the information gathered in section 3.1 and 3.2, the GUI performance problems are related to

overdraw. This problem can affect the rendering performance of the screens of the applications [17]. Generally,

most study on the psychology of human interactions strength the 3seconds rule, and recommend developers to

make the application to run as faster as possible [18].

Removing the unnecessary background declaration of the layouts can minimize the GUI performance problem

to a certain level. To demonstrate this, we used the Chat_room XML file of the Kakao Talk: Free Calls & Text

application. This screen has high overdraws of four or more times (red color). We removed some of the

unnecessary background declaration programmatically and the others through the XML file to minimize the

overdraw problem. Programmatically the activity background is nullified by setting the

getWindow().setBackgroundDrawable(null) to null the background attribute as shown in Fig. 1 (ii). The

nullifying activity reduce the background overdraw from 3X (Pink) to 2X (Green). Furthermore, we remove

three (3) unnecessary background declarations attributes from the XML file to reduce the 3X (Pink) overdraw to

1X (Blue) overdraw as shown in Fig. 1 (iii).

Figure 1: Removing the background to minimize overdraw

After we applied the best practices, we measure the execution time of each layout (screen) to evaluate the

performance improvement. In Table 4, the last column displays the time improvement in millisecond after the

performance tuning activity. The timing is collected using the Hierarchy View tool by executing each

application twice for validation purpose.

1951 | P a g e

Table 4. Systrace (Hierarchy View Tool) Timings before and after the modification

Sample Screens

 (In two Iteration - I1 and I2)

Original Background

Removed

Difference

(Δ)

Chat_room (I1) 4.235ms 4.021ms - 1.615ms

Chat_room (I2) 4.243ms 4.019ms - 1.613ms

Message_list_list_view (I1) 3.608ms 3.455ms - 0.153ms

Message_list_list_view (I2) 3.601ms 3.401ms - 0.200ms

List_position (I1) 2.962ms 2.538ms - 0.424ms

List_position (I2) 2.973ms 2.604ms - 0.369ms

Opl_review_order_v2 (I1) 5.720ms 5.453ms - 0.267ms

Opl_review_order_v2 (I2) 5.707ms 5.464ms - 0.243ms

IV. RESULTS AND DISCUSSION

This study investigated the GUIs performance problem of Android applications. We analyzed the use interfaces

of ten applications to determine the common problems. Then, proposed best practices and an extensive use of

the Android Studio tools to minimize the problems. Generally, we identified a numbers of exciting results as

show below:

 The study reveals the common GUIs performance problems of Android applications. The problems are

repeatedly occurred in many of the sample applications in similar pattern. These problems are unnecessary

backgrounds, and deeply nested layouts.

 Though there are many best practices to optimize the performance of the GUI of the applications, developers’

do not use these techniques and the Android SDK tools. This can be observed from the sampled problems

shown in section 3 of this study.

 Applying a performance improvement phase has a great effect to encourage developers to correct GUI

performance problems in time. Therefore, it is required to include a dedicated performance improvement phase

to the development life-cycle.

Although, the above findings are helpful to show the severity of the GUI performance problem, it is required to

conduct the study at a large scale to make generalization. Generally, the user experience of an application is

directly related to the screen appearance. Users will have negative feeling for the application, which is slow to

load or not fast enough to scroll smoothly. Hence, the study suggests the use of the best practices and the

ultimate utilization of the Android Studio tools for good performance GUI.

1952 | P a g e

V. CONCLUSIONS AND FUTURE WORK

With the increasing popularity of the mobile technology and applications user experience becomes very

important to get higher user acceptance. Nowadays, Android applications are the dominant mobile technology in

market. There are various types of applications on Google Play Store that are downloadable with payment and

for free. Nevertheless, many of the applications have GUIs performance problems as identified in this study and

reported by others studies [8, 9, 15].

In this study, we examine the GUI performance problems of Android applications. For the purpose of the study,

we downloaded ten Android applications from Google Play Store. We examined the applications GUI

performance problem using Android SDK tools. The result indicates that most of the applications have GUI

performance problems such as overdraw, and deep hierarchy. We suggested a GUIs performance tuning best

practices and applied the best practice on four of the sample applications screens (layouts). Finally, the

performance improvements are presented in terms of time. Although, the study indicates how it is valuable to

apply the best practices and Android Studio tools, it required a detail and more study due to the high complexity

of the Android applications and the platform. In the future, we would like to work on the deep hierarchy

problem.

REFERENCES

[1] http://www.idc.com/prodserv/smartphone-os-market-share.jsp, Smartphone OS Market Share, IDC Analyze,

May 2015.

[2] http://www.statista.com/statistics/270291/popular-categories-in-the-app-store/, Most Popular Apple App

Store Categories 2015, The statistics Portal, December 2015.

[3] Christopher Orr, Building, Testing and Deploying Android Applications with Jenkins, Publisher, 2014.

[4] Gerardo Canfora, Mauro D’ Angelo et al., A Case Study of Automating User Experience Oriented

Performance Testing on Smartphones, IEEE, Verification and Validation, 2013.

[5] Chien Hung Liu, Chien Yu Lu et al., Capture Replay Testing for Android Applications, International

Symposium on Computer and Control, 2014.

[6] Christopher Dong, Xing Liu, Development of Android Application for Language Studies, ScienceDirect,

Vol. 4, 2013, 8-16.

[7] https://www.safaribooksonline.com/library/view/high-performance android/9781491913994/ch04.html,

Screen and UI Performance, 2015.

[8] Domenico Amalfitano, Anna Rita Fasolino et al., Using GUI Ripping for Automated Testing of Android

Applications, International Conference of Automated Software Engineering, 2012.

[9] Shengqian Yang, Dacong Yan et al., Testing for Poor Responsiveness in Android Applications, International

Workshop on the Engineering of Mobile-Enable System, 2013, 1-6.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
https://www.safaribooksonline.com/library/view/high-performance%20android/9781491913994/ch04.html

1953 | P a g e

[10] Isabelle Dalmasso, Soumya Kanti Datta et al., Survey, Comparison and Evaluation of Cross Platform

Mobile Application Development Tools, International Conference of Wireless Communications and Mobile

Computing, 2013 , 323-328.

[11] Anthony I. Wasserman, Software Engineering Issues for Mobile Application Development, The FSE/SDP

Workshop on Future of Software Engineering Research, 2010, 397-400.

[12] Jianye Liu, Jiankun Yu, Research on Development of Android Applications, International Conference on

Intelligent Networks and Intelligent Systems, 2011, 69-72.

[13] Chien Hung Liu, Chien Yu Lu, et al., Capture-Relay Testing for Android Applications, International

Symposium on Computer, Consumer and Control, 2014, 1129-1132.

[14] Cuixiong HU, Lulian Neamtiu, Automating GUI Testing for Android Applications, Proceedings of the 6
th

International Workshop on Automation of Software Test, 2011, 77-83.

[15] http://apps.evozi.com/apk-downloader/, APK Downloader.

[16] Jung-Hoon Shin, Mesfin Abebe, et al., Examining Performance Issue of GUI Based Android Applications,

Advanced Multimedia and Ubiquitous Engineering, Springer Link, 2016, 415-420.

[17] Diego Torres Milano, Android Application Testing Guide, PACKT Publishing, 2009.

[18] Abilio G. Parada, Lisane B. de Brisolara, A Model Driven Approach for Android Applications

Development, Brazilian Symposium on Computing System Engineering, 2012, 192-197.

http://apps.evozi.com/apk-downloader/

