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ABSTRACT

Integral image computing is an important part of many vision applications and is characterized by concentrated
computation and frequent memory accessing. This brief proposes an approach for fast integral image
computing with high area and power efficiency for vision applications in embedded systems. For the data flow
of the integral image computation a dual-direction data-oriented integral image computing mechanism is
proposed to improve the processing efficiency, and then a pipelined parallel architecture is designed to support
this mechanism. The parallelism and time complexity of the approach are analysed and the hardware
implementation cost of the proposed architecture is also presented. Compared with the state-of-the-art methods
this architecture achieves the highest processing speed with comparatively low logic resources and power
consumption. And according to review we can improve the high area and power efficiency.

Keywords - Integral Image, Parallel Processing, Pipelined Architecture.

I. INTRODUCTION

Integral image computing is a very important and convenient method to accelerate the feature computation in
the vision algorithms.The Integral Image or Summed Area Table, was first introduced to us in 1984, but wasn’t
properly introduced to the world of Computer Vision till 2001 by Viola and Jones with the Framework. The
Integral Image is used as a quick and effective way of calculating the sum of values (pixel values) in a given
image — or a rectangular subset of a grid (the given image).lt can also, or is mainly, used for calculating the
average intensity within a given image. If one wants to use the Integral Image, it is normally a wise idea to make
sure the image is in greyscale first.

It can be used to compute the Haar-like feature in the Adaptive Boosting (AdaBoost)-based face detection [1],
[2], speech detection, and human activity recognition [3], and can also be used to compute the Speeded Up
Robust Features in the corresponding detection occasions [4]. Although the integral image is an effective way to
quickly compute the features, the computing of integral image is computation and memory accessing intensive,
and usually accounts for large parts of the total execution time. In embedded vision applications such as object
detection in automotive systems, biomedical systems, and some portable systems, real-time processing is
required within a limited power budget and hardware implementation size. Since specialized hardware
consumes less power and can be built into small systems, it is more suitable for embedded applications. Thus,
the implementation of fast integral image computing on specialized hardware is of vital practical significance.

Some different approaches have been proposed in related works to improve integral image computing
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efficiency, such as the Kyrkou’s and Hiromoto’s methods [5] and [6]. However, the existing approaches
havesome drawbacks since the parallelism of the integralimage computing is not fully exploited during
computation. A faster speed of computation could be achieved with comparatively low power and in a small
area by fully exploiting the parallelism in the computation. In this brief, we propose a dual-direction data-
oriented integral image computing method to exploit the parallelism, and we design a parallel hardware

architecture based on the proposed method.

a) (b)

for(x=1:x==—m:;x++)
for (y=1:;y=—n;y++t)
IGLY)=p Ly HI(x- 1. y)+HICK,y-1)-I(x-1.x-1)
end
end
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Fig. 1. Integral image computation. (a) Integral image definition. (b) A property of integral image. (c)
Pseudo-code of integral image computing code.

To evaluate the proposed architecture, we implement the integral image computing methods in [5] and [6] on
hardware for comparison. The performance metrics, including speed, area, and power, are evaluated to show the

efficiency of the architecture.

1. INTEGRAL IMAGE COMPUTATION

Integral image, which is known as the summed area table, is a data structure that can quickly and efficiently
computethe sum of values in a rectangular subset of a grid [7]. The integral image value I(x, y) at location (X, y),
which is defined in following, is equal to the sum of the intensity of all pixels above and to the left of location

(%, y) in the original image p(x, y), as shown in Fig. 1(a):

I(z,y) = ) > ple.y). (1)

r'=zy'<y
Given an m x n image, the integral image value I(X, y) can be computed according to the pseudocode shown in
Fig. 1(c),where I(X, y) depends on I(x — 1, y), I(x, y — 1), and I(x — 1, y — 1). The integral image has a property
that we can makeuse of in hardware design [see Fig. 1(b)]. The integral imagevalue at (x0, y0) is the sum of the
intensity of all the pixels inarea A plus the sum of intensity of pixels in area B, which isshown in (2). Since the

first term on the right part of (2) is the value of the integral image at the point (x1, y0), we can obtain (3) in
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Hence, when the integral image of A is computed, if we want to compute the integral image values in B, we can
regard B as an independent image and compute its integral image; then, we add each row of integral values with
the rightmost value at the same row in the integral image of A. Therefore, we only need to know the value of the
rightmost column in the integral image of A to compute the integral image value of B.

Maximal parallehism:
x4 m iterations

L
Affine trasformation ™

X=X, Yy =Xty

Fig. 2. Affine transformation of nested loop for integral image computing (a) Dependency graph of

original loop. (b) Dependency graph of transformed loop.
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Fig. 3. Proposed computing method to exploit the parallelism. (a) Proposed method. (b) Pipeline
processing.
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I1l. PENG OUYANG PROPOSED METHOD

In order to exploit the parallelism for hardware design, we need to analyse the data dependence of integral
image computing. The loop dependence graph of Fig. 1(c) is shown in Fig. 2(a). Each iteration I(x, y) = p(x, y) +
Ix—=1,y)+1(x,y—1) — I(x — 1,y — 1) is represented by one small circle, and it depends on the prior iterations.
For example, the iteration I(x, y) depends on the iterations I(x,y — 1), I(x =1,y — 1), and I(x — 1, y). To achieve
the maximal parallelism, we use affine loop transformation to transform the original loop to a new form, which
is shown in Fig. 2(b), and we can find that the maximal parallelism is m as the iterations in the red circle have no
dependence between each other and can be processed in parallel.

Hence, we propose a dual-direction (row direction and column direction) data-oriented method to exploit this
parallelism. As shown in Fig. 3(a), we use a 4 x 4 image to illustrate
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Fig. 4. Two reference integral computing schemes.
this method. Only six steps are used to compute the integral image. According to this method, for an m x n
image, we need n — 1 row operations and m — 1 column operations to compute its integral image; thus, m + n —
2 steps in total are needed, and the time complexity is O(m + n), which is much lower than the time complexity
of the conventional full accumulation algorithm (O(mn)). In Fig. 4, we adopt two related methods for
comparison. The reference scheme a denote Hiromoto’s integral image computing method in [6], and the
reference scheme b denotes Kyrkou’s integral image computing method in [5]. Hiromoto’s method is similar
with the full accumulation algorithm and needs 16 steps with time complexity of O(mn). In Kyrkou’s method,
the operations include adding the incoming pixels into the stored sum, propagating the incoming pixel to the

next column, and shifting and adding the stored value in the vertical dimensions. It needs ten steps with time
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complexity of O(2m + n). Our method shows the obvious advantage over these two methods. Further, to fully
exploit the parallelism, a pipelined structure can be designed as shown in Fig. 3(b), where the image is accessed
row by row, reducing further time complexity to O(n). This reduction is done by adding the incoming row of
pixels to update the current row of pixels in each cycle, and column operations can be achieved using cascaded
row registers and adders between them. By means of pipeline processing, the parallelism of m shown in Fig.
2(b) can be achieved by an m x m processing structure. For example, as shown in Fig. 3(b), four integral image
data in the diagonal region are computed in parallel by a 4 x 4 computing structure. The detailed hardware
architecture based on this design concept is illustrated in Section IV.For images of large size, we could not
access a whole row simultaneously as the output data width of memory that stores image pixels is limited. To
solve this problem, we divide the image into several “strips.” As shown in Fig. 5(a), we first compute the
integral image of strip 1 and store the rightmost integral value of each row of strip 1. Then, we use the property
mentioned in Section Il to compute the integral image values in strip 2. Similarly, we store the rightmost
integral value of each row of strip 2 and compute the integral image values in strip 3. We repeat the same
operations for the rest strips. These strips are computed in a pipeline way, as shown in Fig. 5(b). For an m x n
image, if the width of each strip is w (Usually m could be exactly divided by w), it will take n steps to compute
each strip, and there would be m/w strips. In addition, each strip is computed using a pipelined structure with
cascaded row

slr;ip-
T [—
|
1 2 . miw-ll miw 2
—’w"
AJ {
(a) e (b)

Fig. S. ‘Strips’ mechanism for large image. (a) Image is divided in to strips. (b) Strips are processes in

pipeline way.
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Fig. 6. System Overview
and column operations, which causes a delay of w steps in the cascaded structure to fill the pipeline. Thus, in
total, it will take

Snum steps to compute the integral image. Snum is defined as

Shum — w + m/w x n. (4)

By selecting an appropriate value of w, we can achieve the highest efficiency by trading off between speed, area,
and power dissipation.

IV. VERIFICATION

In this section, the proposed architecture is implemented on a field-programmable gate array (FPGA), and the
functionality and system performance are evaluated. Details of our experiment are shown in the following.

A. Experiments Set Up

We adopt 3000 sample images to evaluate the average performance of this brief. These images are in multiple
sizes (640 x 480, 1280 x 720, 1920 x 1080, and 4096 x 2160) used in our experiment. According to review, we

have a comparison between Kyrkou, Hiromoto and Peng Ouyang. The testing results are shown below.
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TABLE |
FUNCTIONALITY VERIFICATION

Data Performance Kyrkou Hiromoto Baseline This

set metric 5] [6] scheme work
CMU DR 93.0% 93.0% 93.0%% 93.0%
FPR 0.00054 0.00054 0.00054 0.00054

Yale DR 94, 1% 94 1% 94 1% 94 1%
FPR 000061 00,0006 1 000061 0.00061

ORL DR 94, 8% O B%% 94 8% 94 8%
FPR 0, 00079 0. 00079 0. 00079 0. 00079

TABLE Il

COMPUTATION SPEED

Image size Kyrkou[5]  Hiromoto[6]  This work

640480 1339 fps 163 fps 5191 fps

1280x720 446 fps 54 fps 1734 fps

19201080 198 fps 24 fps 771 fps

4096x2160 46 fps 6 fps 181 fps
TABLE Il

HARDWARE RESOURCES

Kyrkou[5]  Hiromoto[6]  This work

Computation Unit#{LEs) 2682 1316 2537
Control Unit#{LEs) 542 213 921
Total #(LEs) 1224 1529 3458

When testing on the same set of images, the average detection rate (DR) and false positive rate (FPR) are the
same, which means that the integral images computed by different schemes are the same. These results prove
that our architecture achieves the correct integral image data. For different sets of images, DR and FPR are
different due to the different image contents in different image sets.

C. System Performance

The comparison results of processing speed on different sizes of images are listed in Table Il. The area (number
of LEs)of integral computing unit and CU are shown in Table Ill. In experiments, the memory including the
input memory for original images and output memory for integral images are the same for Kyrkou’s method [5],
Hiromoto’s method [6], and this brief. In addition, we present the synthesis power results of different sizes of
images in Table IV. In this brief, for an m x n image, the time complexity is O(n), whereas it is O(2m + n) in
Kyrkou’s method and O(mn) in Hiromoto’s method.

Meanwhile, the pipeline manner of cascade accumulation by row greatly improves the processing efficient. As
shown in Table I, this brief achieves the highest speed for images with different sizes. Since we design the

strip-based unique memory architecture in the CU and exploit high parallelism for the computing unit, the
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power and hardware cost per operation in integral image computing are largely reduced, although the total
power and area cost are slightly higher than Kyrkou’s method and Hiromoto’s method as shown in Tables III
and 1V. The power efficiency (i.e., computation speed per unit power) and area efficiency (i.e., computation
speed per unit area) is related to processing speed, power, and hardware resource. By choosing w = 32 in the
CALU design, the power efficiency and area efficiency are also improved. This is because that our
TABLE IV
POWER CONSUMPTION

Image size Kyrkou[5]  Hiromoto[6]  This work
B4 80 E82 mW 2533 mW 901 mW
12800720 21.93 mW 13 mwW 2252 mW
19202 1080 47.62 mW 19.20 mW 54.6 mW
40962160 220,53 mW 96.1 mwW 2317 mW
TABLEV
SPEED PER UNIT AREA
Image size Kyrkou[5] Hiromoto[6] This work
640x480 0415 fps/LE  0.107 fps/LE  1.501 fps/LE
1280720 0.138 fps/LE 0.035 fps/LE 0.501 fps/LE
1920 1080 0.061 fps/LE 0.016 fps/LE 0.223 fps/LE
42 160l 0.014 fps/LE 0.0039 fps/LE 0052 fps/LE
TABLE VI
SPEED PER UNIT POWER
Image size Kyrkou[5] Hiromoto[a] This work
6402480 151.8 fps/mW  64.4 fps/mW  576.1 fps/mW
1280720 20.3 fps/mW 6.6 fps/mW 77.0 fps/mW
192021080 4,15 fps/mW 1.25 fps/mW 14.12 fps/mW
409622160 021 fps/mW 0,06 fps/mW 0.78 fps/mW

parallel architecture improves the data reuse and reduces the memory access cost per operation, resulting in high
power and area efficiency. As shown in Tables V and VI, our speed per unit area is 3.61 ~3.66 times higher
than Kyrkou’s and 13.3 ~ 14.2 times larger than Hiromoto’s; our speed per unit power is 3.74 ~3.79 times

higher than Kyrkou’s and 8.9 ~12.5 times higher than Hiromoto’s.
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V. CONCLUSION

In this brief, According to Peng Ouyang, Shouyi Yin, Yuchi Zhang, Leibo Liu, and Shaojun Wei proposed a fast
integral image computing method and construct the parallel and pipelined architecture.Compared with state-of-
the-art methods, the proposed architecture achieves fast computation speed with higher power and area
efficiency. According to review we can improve a fast integral image computing method and construct the
parallel and pipelined architecture with high area and power efficiency. This architecture can be used in

embedded systems for many vision based applications that depends on integral image computing.
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