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ABSTRACT 

A mixed simplification method for linear dynamic systems via reducing the order of its transfer function is 

proposed in this paper. The reduced denominator polynomial of the simplified system is computed using 

Simplified Routh Approximation Method (SRAM), while the coefficients of numerator are obtained through 

factor division algorithm. The proposed method is easy to understand and capable to match transient and 

steady-state value of the high order original system. The proposed algorithm is illustrated through one example.  
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I. INTRODUCTION 

In many engineering simulations, one can obtain a complex model of a linear dynamic system for analytic 

considerations and controller design purposes. The complex systems are not easy to understand as well as 

controller design is also quite cumbersome. Therefore, it becomes essential to simplify the dynamic models for 

analysis and controller design purposes. The various simplification methods for system simplification have been 

suggested in the last few decades. But, still research is going on to identify more effective methods for 

simplification.   

A good number of simplification methods [1-8] in frequency as well as time domain are available in the 

literature. The order reduction based on Routh approximation method [9] is available in which ' ' and 

' ' parameters are computed to get denominator and numerator of the simplified model. But in SRAM, only 

' '  parameters are required to synthesize the reduced model. The reduced denominator of simplified is 

determined by only ' '  parameters and numerator is computed through factor division algorithm.  

II. PROBLEM STATEMENT 

Consider alarge-scale systemhaving its transfer function of the order ' 'n as 
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Where ia and ib are known scalar constants. 
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Thecorresponding thk -order simplified model isto be determined as  
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The objective is to find simplified model ( )kR s from the original system ( )G s using the proposed method of the 

system simplification.  

III. PROPOSED SIMPLIFICATION ALGORITHM 

Thedescription of the proposed methodologyis given as under, which consists of the following two steps.   

STEP-1: Computation of the reduced denominator polynomial of the simplified model. 

To overcome the problems associated to model order reduction methods based on Routh approximations of the 

system, a new simplified method SRAM [10] is used here to get reduced denominator polynomial of the 

reduced simplified model. The ' ' parameters from denominators polynomial of the original system, are 

calculated as  

  Table of SRAM [10] 
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 For „ i ‟odd 
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For „ i ‟ even 
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Finally,  
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STEP-2: Computation of the numerator of simplified model using factor division algorithm [11]. 

The ( )kD s  is already obtained in Step-1and ( )kN s is determined as 
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Therefore, ( )kN s of the simplified model will be defined as  
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This can be done by using Routh recurrence formula given as follows:  
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Where  
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Hence, reduced numerator can be written as  

2 1
0 1 2 1( ) ... k

k kN s s s s    
      (10) 

IV. RESULTS AND COMPARISON 

The simplification method is tested on one system taken from literature. The simplified reduced models are 

obtained and graphically compared with the original system. The performance index known as integral square 

error (ISE) [12] is computed with the help of MATLAB/ simulink model in order to check the effectiveness of 

the proposed method.   

The ISE is defined as  

ISE 
2

0
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
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Where the terms ( )x t and ( )kx t are known as step responses of the large-scale systemand simplified model 

respectively. The smaller value of ISE indicates the better simplified model. 

Example-1:  Consider an8
th

 –order system taken from literature [4].  
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The values of   parameters are calculated using algorithm given as above 
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Using Step-1, thereduced denominator polynomial of 2
nd

 –order simplified system is computed as 
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Using Step-2, ' ' -coefficients can be obtained as 
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Hence, numerator polynomial of the simplified models is obtained as  

2 0 1( )N s s    

          = 5.3913 12.0960s  

Finally, 2
nd

 –order simplified model is obtained as 
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The graphical comparison of 2
nd

-order simplified model with original high order system is shown in Fig-1. The 

ISE error index is also computed between the time responses using MATLAB/Simulink model and given in 

Table-1.  

From Table-1, it can be noted that proposed method generates 2
nd

 –order model, which is far better than the 4
th

 –

order models obtained by other two methods.   

From Fig-1, It is clear that simplified model is closely matching the response of the original large-scale system 

and also it is seen from Table-1 that proposed method is better in performance in comparison to few other 

methods. 
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Figure-1 Step Response Comparison 



 

1653 | P a g e  

 

Table-1: Comparison with others methods 

Method  Simplified Model   ISE 

Proposed Method 
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V.  CONCLUSION 

The authors suggested a mixed simplification method using SRAM and factor division algorithm. The 

denominator of the simplified model is derived through simplified Routh approximation method (SRAM), in 

which only ' ' -parameters are required and numerator is found using factor division algorithm. The advantage 

of the algorithm is to retain stability in the simplified models. The algorithm has been illustrated on one high- 

order system. The step response of simplified model is graphically compared with the original high order 

system. The graphical comparison in Fig.1shows that simplified model is very near to the original system. The 

error comparison is given in Table-1 for 2
nd

 –order simplified model and this error is even lesser than 4
th

 –order 

models obtained by Jay Singh [13 ] and J. pal [4].  

This simplification method can be used on multi-inputs multi-outputs (MIMO)linear time-invariant systems as 

well.  
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