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ABSTRACT  

A standard convex approach for sparse one-dimensional de-convolution improves upon L1-norm regularization. 

We propose a sparsity -inducing non-separable non-convex bivariate penalty function for this purpose. It is 

designed to enable the convex formulation of ill- conditioned linear inverse problems with quadratic data 

fidelity terms. The new penalty overcomes limitations of separable regularization. We show how the penalty 

parameters should be set to ensure that the objective function is convex, and provide an explicit condition to 

verify the optimality of a prospective solution. In this project, We present an algorithm (an instance of forward-

backward splitting) for sparse de-convolution using the new penalty terms. 
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I. INTRODUCTION 

In this literature we are going to deal with sparse regularization. This sparse regularization can be categorized 

into two types. One is convex and other one is non-convex. In this project we are using the term regularization 

terms is called as penalty functions. In the convex approach, the regularization terms or penalty functions are 

convex. The convex method consisting of both data fidelity and regularization terms. So that the objective 

function is convex  [1], [2]. By using this convex approach method we have several advantages i.e., the 

objective function is free of extraneous (irrelevant) local minima, and globally convergent optimization 

algorithms can be improved [3]. 

The Non-convex regularization has more advantages [4], [5], [6] comparative to convex regularization . 

Classical and recent examples of non-convex method is edge preserving tomography [7], [8], [9], [10] and 

compressed sensing [11], [12], [13], respectively. By using these techniques the non-convex approach performs 

better than convex one’s. In the non-convex approach, penalty functions are non-convex. Because these non-

convex functions are designed to induce sparsity more effectively than convex one’s. therefore the convexity of 

the objective function is generally sacrificed. Non-convex regularization is having some complications that is 

the objective function will generally posses many sub-optimal local minima in which optimization algorithms 

can become entrapped. 

It turns out, without giving up the convexity of the objective function and corresponding benefits. The non-

convex penalties can be utilized. This is achieved by carefully specifying the penalty in accordance with the data 

fidelity term, as described by Blake, Zimmerman, and Nikolova [14], [15], [9], [10]. In recent work, a class of 
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sparcity-inducing non-convex penalties has been developed to formulate convex objective functions and applied 

to several signal estimation problems [16], [17], [18], [19], [20], [21], [22], [23], [24]. This approach maintains 

the benefits of the convex framework (absence of spurious local minima, etc.), yet estimates sparse signals more 

accurately than convex regularization (e.g., the 
1l norm) due to the sparsity –inducing properties of non-convex 

regularization. However , this previous work considers only separable (additive) penalties, which have 

fundamental limitations. 

In this paper, we introduce a parameterized sparsity-inducing non separable non-convex bivariate penalty 

function. To enable the convex formulation of ill-conditioned linear inverse problems with quadratic data 

fidelity terms the penalty function is designed. The new penalty overcomes the limitations of separable non-

convex regularization. In this paper, now we show how the penalty parameters should be set to ensure the 

objective function is convex. And we also show how this bivariate  penalty can be incorporated into linear 

inverse problems of  N variables ( 2)N  , and then we provide an explicit condition to verify the optimality 

of a prospective solution. For sparse signal reconstruction using the new penalty we present an iterative 

algorithm (as instance of forward-backward splitting), and we demonstrate it’s effectiveness for one-

dimensional sparse de-convolution. 

A. Notation 

We write the vector 
Nx R as  1 2,....,, Nx x x x . Given 

Nx R , we define 0nx   for {1,2,...., }n N . 

(This simplifies expressions involving summations over n .) The 1l norm of 
Nx R is defined as 

1 | |n

n

x x  . If the matrix A  is positive semi definite, we write 0A . If the A B  is positive semi 

definite, we write A B . 

 

II. SPARSE RECONSTRUCTION 

In signal processing the practical problems are involve far more than two variables. Therefore, the proposed 

bivariate penalty  and convexity condition are of little practical use on their own. In this section we show how 

they can be used to solve an N - point linear inverse problem (with 2N  ). We consider the problem of 

estimating a signal 
Nx R  given y , 

y Hx w                                                                                        (1) 

Where H is a known linear operator, x  is known to be sparse, and w  is additive white Gaussian noise 

(AWGN). we formulate the estimation of x  as an optimization problem with bivariate sparse regularization 

(BISR), 
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    2

2 1

1
arg min{ , ; }

2 2N n n
x R

n

x F x y Hx x x a







                                 (2) 

Where 0  ,  1 2,a a a  and 
2: R R   is the proposed bivariate penalty. In the penalty term, the first 

and last signal value pairs,  0 1,x x  and  1,N Nx x  , straddle the end-points of x . C , we define 0nx   for 

{1,2,..., }n N , which simplifies subsequent notation. 

If 1 2a a , then the bivaiate penalty is separable, i.e.,      1 1 2 1; ; ;u a u a u a    , and the N -point 

penalty term in (2) reduces to  1;n

n

x a  . Hence, we recover the standard (separable) formulation of 

sparse regularization. In particular, if 1 2 0a a  , then   1 2;0 | | | |u u u   and the N -point penalty term 

reduces to 1x   , i.e., the classical sparsity-inducing convex penalty. 

 In order to induce sparsity more effectively, we allow   to be non-separable; i.e., 1 2a a . To that 

end, the following section addresses the problem of how to set 1a  and 2a  in the bivariate penalty   to ensure 

convexity of the N - variate objective function F in (2). 

The lemma is proven in appendix D. According to the lemma, it is sufficient to restrict   so as to ensure 

convexity of the bivariate function f in (3). Therefore , the allowed penalty parameters ia  can be determined 

from the tridiagonal matrix P. using  lemma 1, we obtain theorem 1. 

A. Optimality Condition 

In this section, we derive an explicit condition to verify the optimality of a prospective minimize of the objective 

function F in (2). The optimality condition is also useful for monitoring the convergence of an optimization 

algorithm (see the animation in the supplemental material). 

The general condition to characterize minimiers of a convex function is expressed in terms of the sub 

differential. If F is convex, then 
opt Nx R  is a minimizer if and only if  0 optF x  where F  is the sub 

differential of F . 

We seek an expression for the sub differential of the objective function F . The function F in (2) has a 

regularization term that is non-differentiable, non-convex, and non-separable. But using , we may write the 

regularization term as  
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  1

1
, ;

2
n n

n

x x a                                                                                    (3) 

    1 1 1

1
[ , ; , ]

2
n n n n

n

S x x a x x                                                             (4) 

=   1 1

1
, ;

2
n n

n

x S x x a                                                                          (5) 

Where 0nx   for {1,2,..., }n N . We define : NR R   as  

    1

1
, , ;

2
n n

n

x a S x x a                                                            (6) 

The function   is twice continuously differentiable because it is the sum of twice differentiable functions. 

Using (5), we ,may express the objective function F  in (2) as 

                                         2

2 1

1
;

2
F x y Hx x a x                                                        (7) 

The benefit of (7) compared to (2) is that the regularization term ( which is non-differentiable, non-convex, and 

non- separable ) is separated into a differentiable part and a convex separable part. The   term is differentiable 

and its gradient is easily evaluated. The 1l norm is separable and convex and its sub differential is easily 

evaluated. 

 The gradient of   is given by 

                            1 1 2 1

1 1
; , ; , ;

2 2
n n n nn

x a S x x a S x x a                                       (8) 

Where iS  is the partial derivative of   1 2,S x x  with respect to ix . The sub differential of the 1l  norm is 

separable [11], 

                          1 1 ... Nx sign x sign x                                                                   (9) 

Where sign is the set-valued signum function 
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 

 

 
 

1 , 0

: { 1,1 , 0

1 , 0

t

sign t t

t

  







                                                                               (10) 

Since the first two terms of (7) are differentiable, the sub differential of F  is 

                              1;TF x H Hx y x a x          .                                                 (11) 

Hence the condition  0 optF x  can be expressed as  

                     11/ ;T opt opt optH y Hx x a x                                                        (12) 

Expressing this condition component-wise, we have the following result. 

B. Sparse Deconvolution 

We apply theorem 1 to the sparse deconvolution problem. In this case, the linear operator  H  represents 

convolution, i.e., 

  n k kn
k

Hx h x                                                                      (13) 

That is, H  is a Toeplitz matrix. It represents a linear time-invariant (LTI) system with frequency response 

given by the Fourier transform of h , 

  jwn

n

n

H w h e                                                                      (14) 

Similarly, the matrix P  in (2a) represents an LTL system with a real-valued frequency response, 

  1 0 1

jw jwP w p e p p e                                                                  (15) 

0 12 cos( )p p w                                                                     (16) 

Specializing theorem 1 to the problem of de-convolution, we have the following results. 
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III. FIGURES 
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Fig.1. Filters  H w  and  P w  for example 2. 
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Fig. 2. Example 1 of sparse deconvolution using BISR 
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Fig .3. example 2 of sparse deconvolution using BISR. 

IV. COMPARISION TABLE 

Algorithm RMSE No of iterations 

1l  norm De-convolution 4.70 32 

Proposed De-convolution 3.11 22 

 

V. CONCLUSION 

The results and comparison table show that Proposed De-convolution gives RMSE value better than 1l  norm De-

convolution. The signal can be exactly or more approximated estimated using the proposed de-convolution. 
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