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ABSTRACT  

The objective of this paper is to unify the area of group theory with the study of symmetry. Group Theory is the 

mathematical study of symmetry and explores the general ways of studying it in many distinct settings. Dihedral 

group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral group 

plays an important role in group theory. 

 

Group Theory and Symmetry- The study of symmetry has undergone tremendous changes in late 19
th

 

and earlier 20
th

 centuries with the development of group theory, Group theory has found applications in 

geometry, graph theory, physics, chemistry, architecture, crystallography and countless other areas of modern 

science. There is hardly a disciple in which the study of symmetry, often with the tools provided by group 

theory, has not played an important role. 

A set is group with the binary operation s.t. 

(a) Closure : is closed under operation i. e. if   then  

(b) Identity : for all   s. t.  

(c) Inverse : for all   there is an inverse in  

i.e. for all   s. t.  

(d) The operation  acts associativity. 

i.e. for all   we have  
 

Some permutation groups can be constructed by using symmetrical motions of certain geometrical figures. A 

motion of a geometrical figure is said to be symmetrical if the figure looks like the same after the motion as 

before. 

By rotation of a plane figure, we mean a motion of the figure about any point in the figure. 

By reflection of a plane figure, we mean a motion of the figure about a line such that every point of the line is 

kept fixed and every point not on the line is carried into the mirror image point at equal distance access the line. 

The resultant of two motions is a single motion arising from performing in succession the two motions.  

 

 

 

G 

G  Gba , Gba 

Ga  Ge aeaea 

Ga  G

Ga  Ga  aaeaa 



Gcba ,, cbacba *)*()*( 
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Group of Symmetrical Rotations in the Plane:- 

Consider the plane figure. Let 𝜌0 , 𝜌1 , 𝜌2, 𝜌3 denote the rotations counter clockwise about its centre O through the 

angles 0
o
, 90

o
, 180

o
&270

o
 respectively, then the set G = {𝜌0 , 𝜌1 , 𝜌2, 𝜌3 } is a group under the composition of 

resultant of motions.  

Here 𝜌0=i=𝜌1= (1 2 3 4),  𝜌2= (1 3) (2 4) , 𝜌3= (1 4 3 2) 

*  𝜌0 𝜌1  𝜌2  𝜌3 

𝜌0  𝜌0 𝜌1  𝜌2  𝜌3 

𝜌1  𝜌1  𝜌2  𝜌3 𝜌0 

 𝜌2   𝜌2  𝜌3 𝜌0 𝜌1 

 𝜌3   𝜌3 𝜌0 𝜌1  𝜌2 

 

 Here is a group. From the table, we see that composition of any two elements in G is also in G. Further,

 acts as an identity element. Each element in also possesses the inverse. The pair of inverses are 

, , ,
.
The composition of elements is again associative as well i.e. for all 

  we have   

 

Group of symmetries of equilateral triangle:- 

Consider an equilateral triangle whose vertices are  labelled points. Consider a fixed point in the centre of this 

triangle. There are two types of symmetries we  an look at. The first is counter clockwise rotational symmetries 

.We can rotate this triangle by or equivalently , or . Let 𝜌0,  𝜌1 , 𝜌2 denote these rotations 

respectively.  

,*)(G

0 G

),( 00  ),( 31  ),( 22  ),( 13 

Gcba ,, cbacba *)*()*( 

00 0360 0120 0240
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For each of these functions,  

𝜌𝑖  :{1, 2, 3} -: {1, 2, 3} for i=0,1,2, we will use permutations of elements in a set as functions for which we have 

𝜌𝑖  = 
1 2 3

𝜌𝑖(1) 𝜌𝑖(2) 𝜌𝑖(3)
  where the first row denotes the elements in f and the second row describes the 

images. 

Thus, 𝜌0 =  
1 2 3
1 2 3

 ,     𝜌1 =  
1 2 3
3 1 2

 ,  𝜌2 =  
1 2 3
2 3 1

  

The second type of symmetries are mirror rotations about medians . Let these reflections 

respectively. Mirroring the equilateral triangle around each of these axes produces a symmetry. 

.1 =  
1 2 3
1 3 2

 ,  .2 =  
1 2 3
3 2 1

 , .3 =  
1 2 3
2 1 3

  

Then the set D3= {𝜌0 , 𝜌1 , 𝜌2, 1, 2, 3} is a non abelian group under the composition of resultant of motions. 

The composition table of D3is shown below  

O 𝜌0 𝜌1 𝜌2 1 2 3 

𝜌0 𝜌0 𝜌1 𝜌2 1 2 3 

𝜌1 𝜌1 𝜌2 𝜌0 3 1 2 

𝜌2 𝜌2 𝜌0 𝜌1 2 3 1 

1 1 3 2 𝜌0 𝜌2 𝜌1 

2 2 1 3 𝜌1 𝜌0 𝜌2 

3 3 2 1 𝜌2 𝜌1 𝜌0 

 

We make note of following points  

1. Every symmetry appears once in each row and in each column. 

2. If  are symmetries of our triangle then it is clear that  

3. acts as an identity symmetry. 

4. Every symmetry has an opposite or inverse symmetry. The pair of inverses are , ,

,(1, 1) ,  2, 2 ,  3 , 3 . 

321 ,, LLL 321 ,, 

hgf ,, )()( gohfoohfog 

0

),( 00  ),( 21 

),( 12 
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5 The symmetries are non commutative. 

The group  is known as group of symmetries of an equilateral triangle or third dihedral group . 

 

Group of Symmetries of Square :- 

Consider a square and label the vertices as .  

Consider the first type of symmetry .Let the four rotations  

about the centre O through  , , or 
 

counter clockwise be denoted by 𝜌0,  𝜌1 , 𝜌2 , 𝜌3 respectively 

Another type of symmetry is two reflections 1 and 2about the diagonals and . Here, 1 and 2 

represent diagonal bisectors axial symmetries. The last type of symmetries are two reflections 3 and4 about 

the perpendicular bisectors and . The set D4 = {𝜌0 ,  𝜌1 , 𝜌2, 𝜌3 , 1,2, 3,4}
  

is a group under the 

composition of resultant of motions, then 

𝜌0 =  
1 2 3
1 2 3  

  4
4
 , 𝜌1 =  

1 2 3
4 1 2  

  4
3
 , 𝜌2 =  

1 2 3
3 4 1  

  4
2
 , 𝜌3 =  

1 2 3
2 3 4  

  4
1
 , 

1 =  
1 2 3
1 4 3  

  4
2
 , 2 =  

1 2 3
3 2 1  

  4
4
 , 3 =  

1 2 3
4 3 2  

  4
1
 , 4 =  

1 2 3
2 1 4  

  4
3
 , 

Here, the set {1,2,3,4} refers to {A,B,C,D}. 

The composition table of D4 is shown as follows: 

 

 

 

 

 

 

 

Every symmetry appears once in each row and in each column . 

2   Associative law holds. 

3 acts as an identity symmetry. 

4 Every symmetry possesses an inverse symmetry. The pair of inverses are 

(𝜌0, 𝜌0), (𝜌1 , 𝜌3), (𝜌2 , 𝜌2), (𝜌3 , 𝜌1), (1, 1), (2, 2), (3, 3) and (4, 4) 

5. As seen from the composition table, we find that the symmetries are non abelian. 

The group is called group of symmetries or fourth dihedral group or octic group. 

 

33 SD 

DCBA ,,,

00 090 0180 0270

AC BD

EG HF

0

4D

0 𝜌0 𝜌1 𝜌2 𝜌3 1 2 3 4 

𝜌0 𝜌0 𝜌1 𝜌2 𝜌3 1 2 3 4 

𝜌1 𝜌1 𝜌2 𝜌3 𝜌0 4 3 1 2 

𝜌2 𝜌2 𝜌3 𝜌0 𝜌1 2 1 4 3 

𝜌3 𝜌3 𝜌0 𝜌1 𝜌2 3 4 2 1 

1 1 3 2 4 𝜌0 𝜌2 𝜌1 𝜌3 

2 2 4 1 3 𝜌2 𝜌0 𝜌3 𝜌1 

3 3 2 4 1 𝜌3 𝜌1 𝜌0 𝜌2 

4 4 1 3 2 𝜌1 𝜌3 𝜌2 𝜌0 
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Group of  symmetries of Pentagon:-  

Consider a regular pentagon whose vertices are the labelled points. 

 

 

 

 

 

 

There are rotation symmetries which we achieve by rotating the pentagon at angles in multiples of 360/n 

degrees. Let 𝜌0 , 𝜌1 ,  𝜌2 ,  𝜌3 , 𝜌4 denote the rotations of pentagon by 0
o
, 72

o
, 144

o
, 216

o
, 288

o
 respectively.  

Thus 𝜌0 =  
1 2 3
1 2 3

    4    
    4    

5
5
 , 𝜌1 =  

1 2 3   
5 1 2   

4    
3    

5
4
 , 

             𝜌2 =  
1 2 3
4 5 1

 4
    2    

 5
3
 , 𝜌3 =  

1 2 3    
3 4 5   

4
1

   
 5
2
 , 𝜌4 =  

1 2 3   
2 3 4   

4   
5   

5
1
 , 

 

The other type of symmetries are given by reflection symmetries or axial flips. Axial flips are given by five axes 

of symmetries . Let 1,2 ,3 ,4 ,5 denote the reflections along the five axes of symmetry which pass through 

the centre.  

Thus 1 =  
1 2 3   
1 5 4   

4   
3   

5
2
 , 2 =  

1 2 3   
3 2 1   

4   
5   

5
4
 , 

3 =  
1 2 3   
5 4 3   

4   
2   

5
1
 , 4 =  

1 2 3
2 1 5

   4   
  4  

5
3
 , 5 =  

1 2 3   
4 3 2   

4   
1   

5
5
 , 

Cayley Table for D5 is 

0 𝜌0 𝜌1 𝜌2 𝜌3 𝜌4 1 2 3 4 5 

𝜌0 𝜌0 𝜌1 𝜌2 𝜌3 𝜌4 1 2 3 4 5 

𝜌1 𝜌1 𝜌2 𝜌3 𝜌4 𝜌0 4 5 1 2 3 

𝜌2 𝜌2 𝜌3 𝜌4 𝜌0 𝜌1 2 3 4 5 1 

𝜌3 𝜌3 𝜌4 𝜌0 𝜌1 𝜌2 5 1 2 3 4 

𝜌4 𝜌4 𝜌0 𝜌1 𝜌2 𝜌3 3 4 5 1 2 

1 1 3 5 2 4 𝜌0 𝜌3 𝜌1 𝜌4 𝜌2 

2 2 4 1 3 5 𝜌2 𝜌0 𝜌3 𝜌1 𝜌4 

3 3 5 2 4 1 𝜌4 𝜌2 𝜌0 𝜌3 𝜌1 

4 4 1 3 5 2 𝜌1 𝜌4 𝜌2 𝜌0 𝜌3 

5 5 2 4 1 3 𝜌3 𝜌1 𝜌4 𝜌2 𝜌0 

 From the above composition table, we see that  

D5 ={𝜌0 , 𝜌1, 𝜌2 , 𝜌3 , 𝜌4, 1, 2, 3 , 4, 5} is non- abelian group. 

1.  𝜌0 acts as an identity element. 

2.  Closure property holds as the composition  between any two symmetries of  D5 gives a symmetry in D5. 

3.   Associative law holds between any three compositions. 
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4.   Each element in D5 possesses an inverse in D5 the fair of inverses are 

(𝜌0, 𝜌0),  𝜌1 , 𝜌4 ,  𝜌2 , 𝜌3 ,  𝜌3 , 𝜌2 ,  𝜌4, 𝜌1 ,  1, 1 ,  2, 2 ,  3, 3 , (4, 4), (5, 5), 

5.   Commutative law does not hold as 

        𝜌4o2 = 4  2o𝜌4 = 5  

              𝜌4 𝑜2   ≠  2𝑜4
    

Group of Symmetries of Hexagon :- 

Consider a regular hexagon whose vertices are the labelled points. 

 

 

 

 

There are six types of rotational symmetries which we can consider by rotating the hexagon by angles in 

multiples of 360/n degrees counterclockwise s by 0
o
, 60

o
, 120

o
, 180

o
, 240

o
, 300

o
.  

Let 𝜌0,  𝜌1 ,  𝜌2,  𝜌3,  𝜌4,  𝜌5  denote these rotations respectively. 

Thus, we  have 

.𝜌0 =   
1 2 3
1 2 3

   4 5
   4 5

   
6
6
  , 𝜌1 =   

1 2 3   
6 1 2   

4 5   
3 4   

6
5
  ,  

.𝜌2 =   
1 2 3   
5 6 1   

4 5   
2 3   

6
4
  , 𝜌3 =   

1 2 3   
4 5 6   

4 5   
1 2   

6
3
  ,      

𝜌4 =   
1 2 3
3 4 5

   4 5   
   6 1   

6
2
  , 𝜌5 =   

1 2 3   
2 3 4   

4 5   
5 6   

6
1
  , 

The other type of symmetries are reflection symmetries or axial flips which are given along six axes of 

symmetry 

.1:-(1)  35  2  6 (4)   2:-  3  15  2 4 (6) 

3:-  1 3  4  6  2 (5)   4:-  16  25  (3  4) 

5:-  1 2  3 6  (4  5)   6:-  14  2 3  (5  6) 

Composition table is 

0 𝜌0 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 1 2 3 4 5 6 

𝜌0 𝜌0 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 1 2 3 4 5 6 

𝜌1 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌0 5 4 6 1 3 2 

𝜌2 𝜌2 𝜌3 𝜌4 𝜌5 𝜌0 𝜌1 3 1 2 5 6 4 

𝜌3 𝜌3 𝜌4 𝜌5 𝜌0 𝜌1 𝜌2 6 5 4 3 2 1 

𝜌4 𝜌4 𝜌5 𝜌0 𝜌1 𝜌2 𝜌3 2 3 1 6 4 5 

𝜌5 𝜌5 𝜌0 𝜌1 𝜌2 𝜌3 𝜌4 4 6 5 2 1 3 

1 1 4 2 6 3 5 𝜌0 𝜌2 𝜌4 𝜌1 𝜌5 𝜌3 

2 2 6 3 5 1 4 𝜌4 𝜌0 𝜌2 𝜌5 𝜌3 𝜌1 

3 3 5 1 4 2 6 𝜌2 𝜌4 𝜌0 𝜌3 𝜌1 𝜌5 

4 4 2 6 3 5 1 𝜌5 𝜌1 𝜌3 𝜌0 𝜌4 𝜌2 

5 5 1 4 2 6 3 𝜌1 𝜌3 𝜌5 𝜌2 𝜌0 𝜌4 
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6 6 3 5 1 4 2 𝜌3 𝜌5 𝜌1 𝜌4 𝜌2 𝜌0 

 

From the composition table, it is clear that the composition of two symmetries from the set 

D6 = {𝜌0 , 𝜌1 ,  𝜌2 , 𝜌3, 𝜌4, 𝜌5, 1, 2, 3, 4, 5, 6} 

is again in the set D6. 

ii) Associative law holds between any symmetries from the  set D6.  

iii) 𝜌0  acts as an identity symmetry. 

iv) Each element in D6 possesses an inverse in D6 .The  pair of inverses are 

(𝜌0, 𝜌0),  (𝜌1 , 𝜌5),  (𝜌2 , 𝜌4),  (𝜌3 , 𝜌3),  (𝜌4, 𝜌2),  (𝜌5, 𝜌1),   

(1, 1),  (2, 2),  (
3

, 3) (4, 4),  (
5

, 5), (
6

, 6) 

The set D6 above stated is non-abelian group and is called dihedral group D6. 

 

CONCLUSION  

In general, we can say that dihedral group is the group of symmetries of the regular polygon which includes 

rotations and reflections. A regular polygon of sides has exactly different symmetries  

1    rotations about about the centre through the angles , , ,…  

2     reflections about the lines joining the centre to vertices (if is odd) and reflections about the lines 

through the centre and parallel to the pair of parallel sides and  about the lines through the centre and passing 

through the mid points to the pair of parallel sides (if is even) 

These  symmetries form a group under the composition of resultant of motions. This group is known as nth 

dihedral group and is denoted by . 
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