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ABSTRACT 

In this paper the motion of a Non-Newtonian dusty fluid through an inclined equilateral channel placed under a 

transverse magnetic field has been studied by using the concern equation of a straight channel after their 

modification for inclined triangular channel with suitable conditions and then through for a series process, an 

systematic explanation for the velocity division has been got for the both fluid and particle phase. The result of 

various parameters connected with the flow problem such as magnetic field, frequency of oscillation and 

inclination are analyst by plotting the graph. 

Keywords: Dusty fluid, Non- Newtonian MHD flows, Triangular -Channel, Magneticfield, Two-

phase flow. 

 

I. INTRODUCTION 

The studies of the flow of  dusty incompressible and electrically-conducting fluid throughout an leaning pipe of 

different cross-sections in company of magnetic field has various important practical applications in industries 

and engineering sciences as the effectiveness and presentation of many devices are affected by the company of 

rejected solid particles covered by the fluid in magnetic field. A big effort has been prepared to recognize 

relations between dusty fluid flow and magnetic field time to time by number of researchers. Saffman
1 

considered the consequence of stability of laminar flow of dusty gas. Dube and Srivastava
2
 studied the equation 

for the unsteady flow of a Dusty viscous fluid by letting consistent distribution of dust particles in a channel 

bounded by 2 parallel flat plates. Pateriya
3 

examined the unsteady viscous fluids flow throughout electrical 

ducts. Rukmangadachari
4
 has found the solution of dusty viscous flow through a cylinder of triangular cross-

section. Das and Gupta
5
 studied the unsteady viscous flow of an incompressible fluid viscous liquid through an 

equilateral triangular channel in presence of magnetic- field. Malekzadeh
6
 investigated the magnetic field effect 

on laminar heat transfer in a pipe for thermal entry region. Chernyshov
7
 obtained the exact solution for unsteady 

two dimensional problem of the motion of an incompressible viscous fluid in rigid tube of triangular cross-

section.Attia
8
explained MHD Hartman flow of a dusty fluid with exponential decaying pressure gradient. 

Sandsoo Lim
9
 examined the MHD micro pump with side-walled electrodes. Lee

10
 has discovered arithmetic 

solution of study on electro hydrodynamic induction pumps by CFD modelling. Khare& Avinash
11

 considered 

Magnetoydrodynamic flow of a Dusty Fluid through an Equilateral Triangular Channel. 

In the current learning, the inclined channel through equilateral triangular cross-section has believed for the 

motion of fluid. The fluid is supposed to be dusty, incompressible and electrically conducting while the particle 
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phase is assumed be incompressible and electrically non-conducting Dust particle are assumed to be sphere-

shaped and of equal size and mass. The flow is persuaded by a decaying pressure gradient & other force of 

interactions has been ignored. The inclined channel is located under an applied transverse magnetic field while 

no electric field is applied and the persuaded magnetic field is neglected by assuming a very little magnetic 

Reynolds number.  

The motion of system has been observed for the fluid and particle phase separately. The differential equations so 

formed have been solved analytically with the established boundary conditions using different mathematical 

techniques and related expressions have been derived by considering parameters viz. Magnetic Field, 

Frequency-Parameter, Dust Relaxation Parameter and Dust Concentration Parameter. Choosing the numerical 

values for these parameters, the derived relations have been used to find the numerical values for the steady and 

unsteady part of velocity. Then the graphs have been drawn to analyze the results which are also examined on 

theoretical basis. 

 

II. FORMULATION OF THE PROBLEM 

Consider the flow of a dusty viscous incompressible fluid through an inclined equilateral triangular channel 

placed under transversely applied magnetic field taking the flow along the axis of the channel. 

 

 

 

 

 

Fig.Shape of Channel 

The governing equations of the motion of a dusty incompressible electricity conducting fluid in a straight 

channel under the influence of applied external transverse uniform magnetic field are given by 
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Where u: Axial velocity of fluid, v: Axial velocity of dust particles, P: Pressure,  : Viscosity of the fluid, K: 

Stokes's resistance coefficient, M: Mass of the each particle, N0: Number density of particles assumed to be 

constant, : Kinematic viscosity,  :Density of fluid,  e:Permeability, : Electrical conductivity, 

B0:Magnetic induction m

K
   :  Relaxation time for dust particle, mN

f


 :   Mass concentration parameter of 

the dust particle. 

The boundary conditions are u = 0 and v= 0 on the boundary of the channel              (1.7)                    

The flow is induced by a pressure gradient of the form 
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    (1.8)Where ω is the frequency of the 

oscillation, A being a constant and ε is a dimensionless small quantity. 

 

III. SOLUTION OF THE PROBLEM 

Now transforming the equation (1.5), (1.6) and (1.8) by using the following non-dimensional variables  
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Where M  is the Hartman Number. 

Putting them in equation (1.5), (1.6) and (1.8) we have 
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On dropping the star and corresponding non dimensional initial and boundary conditions are 
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Now we transform the equations (1.10) to trilinear co-ordinate system. Let PQRbe the equilateral triangular tube 

and O is its centroid taken as origin. The lines perpendicular and parallel to QRare taken as x-axis and y-axis. 

Let 2a be the length of each side of the triangle and r be radius of in-circle.Let p1, p2 and p3 are the perpendicular 

from any point within the triangle on the sidesQR, RPand PQ respectively. 
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Now from equations (1.15) and (1.16), we have  
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Under the transformation of equation (1.17), the equation (1.10) be 
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and the boundary conditions are  
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For the given conditions, we can let the solutions for u and v are of the form 
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And the boundary conditions change to 
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putting the value of different derivatives, u and v in equation (1.18) and separately the terms free from tie   

and the coefficients of tie  , we get 
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Again putting the value of different derivatives, u and v in equation (1.11), we get 
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Now from equation (1.25) in (1.23), we get 
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Now we let the solution of the equation (1.27) satisfying the boundary conditions of equation (1.22) as 
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Substituting the value of different derivatives of u0 & u1 and u0&u1 from equation (1.30) and (1.31) in equation 

(1.27) and (1.28), we get 
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Now expressing  13 2a p
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Now from equations (1.32) and (1.33), we have 
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Hence the solution of equations (1.27) and (1.28) is 
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and also 
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Now from equations (1.38) and (1.39), we get 
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Again from equations (1.40) and (1.41), we get  
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Graph between Magnetic field parameter & Velocity of Fluid.   Graph between Magnetic field parameter & Velocity of Particles. 

 

IV. CONCLUSION 

The above equations are used to find numerical computation for various values of the parameters to analyze 

their effect on the steady and unsteady part of the velocity distributions for both fluid and particle phase.  

(i) The study indicates that for every inclination both velocities show a resonances character which occurs 

nearly magnetic field parameter, the amplitude of unsteady velocity of both phases’ increases and take 

maximum value then decreases with increase of f, the fluid density ρ  decreases with increase in mass 

concentration parameter f, would increase of the velocity. 
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(ii) The assessment of the velocity in case of particle is very very high in comparison to that of fluid. The 

cause is obvious that magnetic field is more efficient on magnetic sensitive particle. Both graphs are shows 

similar in nature except the magnitudes of the changes in parameter are different. It is observed that the 

steady part of flow of the fluid and particle phase is the identical with increase in Hartman number and 

cross-section area of the channel. It is also originate that the assessment of Reynolds number has no effects 

on the fully developed velocity profile.  Also the maximum/minimum velocities for both phases are going 

on at the same inclinations. 

(iii) Their further studies shows that as mass concentration of dust particle increases, the amplitude of unsteady 

part of velocities of both the phase increases and take the maximum value and then decreased due to 

increment of magnetic field. The amplitude of the unsteady part of the velocities of fluid and particle 

phases increase with decrease of frequency of oscillation. It is also observed that as relaxation time of dust 

particles increases, the amplitude of unsteady velocity of both the phases’ increases but when τ decreases 

and tends to zero, the amplitudes of velocities of fluid and particle phase become the same. 

 

REFERENCES 

[1] P. G. Saffman,On the stability of laminar flow of dusty gas, J. Fluid Mech.,13, 1962, 120-128.  

[2] S. N. Dubey and L. P Srivastava, Unsteady flow of a dusty viscous flow with uniform distribution of dust 

particles in a channel bounded by two parallel flat plates,Defence Science Journal, 7(22), 1972, 195-205.  

[3] M. P. Pateriy, Unsteady flow of a dusty viscous liquid through elliptic ducts, I J PA M,7 (6), 1976, 647-658. 

[4] E. Rukmangadachari,and P. V. Arunachalam, Dusty viscous flow through a cylinder of triangular cross-

section, Proc.Indian.Acad.Sci, 88 A(2), 1979, 169-179. 

[5] K. K. Das and P. R. Sengupta, Study of flow of viscous conducting incompressible fluid through an 

equilateral triangular tube in presence of uniform magnetic field, Bull. Cal. Math. Soc,83,1991,370 – 378. 

[6] A. Malekzadeh, A.  Heydarinasab and B. Debir, Magnetic field effect on fluid flow characteristics in a pipe 

of laminar flow, J. Mech. Sci. Tech, 5(3), 2011, 333-339. 

[7] A.D. Chernyshov,Non steady flow of viscous fluid in a tube of triangular cross-section, Fluid dynamics, 

33(5), 1998, 803-806.  

[8] H A. Attiaand E. S. AhmedMHD Hartman flow of a dusty fluid with exponential decaying pressure 

gradient, J. Mech. Sci. Tech,20(3), 2006, 1232-1239.  

[9] S. Lim and B. Choi,A study on the MHD micropump with side-walled electrodes. J. Mech. Sci. Tech, 

23,2009, 379-349.  

[10] B.Z Lee and J. S Lee,A numerical study on electrohydrodynamic induction pumps using CFD modeling, J. 

Mech. Sci.Tech, 24(11), 2011, 2207-2214 .  

[11] R. Khare and Avinash,Magnetohydrodynamic Flow of a Dusty Fluid through an Equilateral Triangular 

Channel, Journal of International Academy of Physical Sciences, 17(2), 2013, 133-144. 


