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ABSTRACT 

In this paper we give a bound for the zeros of a polynomial. The results so obtained  generalizes as well as 

refines many known results proved in this direction. 
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I. INTRODUCTION 

The following result known as the Cauchy’s Theorem [2] (see also [7, page 123]), is well-known on the location 

of zeros of a polynomial: 

Theorem A.  All the zeros of the polynomial 
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In the literature [6,7,9] , various bounds for all or some of the zeros of a polynomial 
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are available. In either case the bounds are expressed as the functions of all the coefficients naaa ,.....,, 10  of 

P(z). 

An important class of polynomials is that of the lacunary type i.e. of the type 
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fixed, kja
jn ,......,2,1,   are arbitrary and the remaining coefficients are zero. Landau[4,5] initiated the study 

of such polynomials in 1906-7 in connection with his study of the Picard’s theorem and proved that every 

trinomial 
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has at least one zero in 
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Q.G.Mohammad [8] in 1967 proved the following theorem: 

Theorem B. All the zeros of the polynomial 
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Aziz and Rather [1] in 2013 proved the following result: 

Theorem C. For every positive number t, all the zeros of the polynomial 
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However Gulzar and wani [3] proved the following result. 

Theorem D.  All the zeros  of the polynomial 
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II. MAIN RESULTS 

In this paper we consider the following generalization of Theorem C and Theorem D, more precisely we prove, 

Theorem 1.  For every positive number t, all the zeros  of the polynomial 
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Remark 1. For t =1, Theorem 1 reduces to Theorem D. 

Remark 2.    For 1 n  in Theorem 1, we get Theorem C. 

Remark 3.    For 1 n  and t =1 in Theorem 1, we get a result due to Gulzar and Wani ([3],  Corollary 1). 

 

III. PROOF OF THE THEOREM 

Proof of Theorem 1.  Consider the polynomial  
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by applying Holder’s inequality. 
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From the above development it follows that F(z) does not vanish for 

                                           ),max(
1

n
pp LLtz  . 

Consequently all the zeros of F(z) and hence P(z) lie in 

                                            ),max(
1

n
pp LLtz  . 

That completes the proof of Theorem 1. 
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