International Journal of Advance Research in Science and Engineering q,

Vol. No.6, Issue No. 08, August 2017 IJARSE
o ISSN (0) 2319 - 8354
www.ljarse.com ISSN (P) 2319 - 8346

Algorithms for some geometric properties of non-transversasl
intersection curve of hypersurfaces in R>

Mohamd Saleem Lone®, Manzoor Ahmad lone®, Mehraj Ahmad Lone?, Shahnawaz Ahmad
Rather*

Central University of Jammu, India.
b Kashmir University, North campus, India.

Abstract

In this paper, we present the algorithms for calculating the differential geometric properties of
the non-transversal intersection curve of Four parametric hypersurfaces in B, In transversal
intersection the normals of the hypersurfaces at the intersection point are linearly independent
and the tangential direction can be easily obtained as their cross product. While as in non-
transversal intersection the normals of the hypersurfaces at the intersection point are linearly
dependent. thus we need to devise whole new algorithms to derive tangential direction and

other geometric quantities.

Keywords: Hypersurfaces, transversal intersection, non-transversal intersection.
MSC 2010:53A05, 53A04.

1. Introduction

The surface-surface intersection problem is a fundamental process needed in modeling
shapes in CAD/CAM system. It is useful in the representation of the design of complex
objects and animations. The two types of surfaces mostly used in geometric designing are
parametric and implicit surfaces. For that reason. different methods have been given for either
parametric-parametric or implicit-implicit surface intersection curves in R*. The numerical
marching method is the most widely used method for computing the intersection curves in R’
and B4, The marching method involves generation of sequences of points of an intersection
curve in the direction prescribed by the local geometry [2, [12]. To compute the intersection
curve with precision and efficiency. approaches of superior order are necessary, that is, they are
needed to obtain the geometric properties of the intersection curves. Differential geometry of
a parametric curve in R’3 can be found in textbooks such as Struik [23], Willmore [24], Stoker
[22], do Carmo [[18]. whereas differential geometry of parametric curves in R" can be found in
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the textbook such as in klingenberg [26] and in the contemporary literature on Geometric Mod-
eling [3L[7]. On the other hand, for the differential geometry of intersection curves, there exists
a little literature. Willmore and Aléssio [16] presented algorithms to obtain the unit tan-
gent, unit principal normal, unit binormal. curvature and torsion of the transversal intersection
curve of two implicit surfaces. Hartmann provided formulas for computing the curvature
of the intersection curves for all types of intersection problems in E3. Ye and Maekawa [27]]
presented algorithms for computing the differential geometric properties of both transversal
and tangential intersection curves of two surfaces. Aléssio [[14] formulated the algorithms for
obtaining the geometric properties of intersection curves of three implicit hypersurfaces in E*.
Based on the work of Aléssio [[14]., Mustufa Duldiil [10] worked with three parametric hy-
persurfaces in B* to derive the algorithms for differential geometric properties of transversal
intersection. Abdel-All et al. [1]] formulated algorithms for geometric properties of implicit-
implict-parametric and implicit-parametric-parametric hypersurfaces in E4. Aléssio et al. [I7]
obtained algorithms for differential geometric properties of non-transversal intersection curves
of three parametric hypersurfaces in B4 Recently Naeim Badr et al. [20] derived the algorithms

for non-transversal intersection curves of implicit-parametric-parametric and implicit-implicit-
parametric hypersurfacres in B4

2. Preliminaries

Definition 2.1. Let {e],€e2,e3,€4,es} be the standard basis of five dimensional Euclidean space

E>. Then the vector product of the vectors x = Y7 | xiei, vy = Y viei, 2 = Y; ;zie; and w =
Y7, wie; is defined by

el €3 €3 €4 €5

Xy X2 X3 X4 X5
X@YRz@w=| ¥y ¥y2 »¥3 ¥4 Y5 |- )
1 2 Z 4 Z

W1 W2 W3 W4 W5
The vector product x & v & z & w yields a vector that is orthogonal to x, ¥, z. w.

let R — E° be a regular hypersurface given by @ — ®(uj, w2, u3,u4) and y: 7 R — & be
an arbitrary curve with arc length parametrisation. If {r,n, by, 52,53} is the Frenet Frame along
v. then we have

i = Kin,
n’:—x]r+x2b|,
L‘r’] = —Kn + K3b, (2)
I?."z = —K3b| + Kub3,
| by = —Kybn,
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second

binormal and third binormal vector fields. The normal vector n is the normalised acceleration

vector Y. The unit vector b; is determined such that »’ can be decomposed into tw

0 com-

ponents, a tangent one in the direction of r and a normal one in the direction of 5. The unit
vector by is determined such that 5} can be decomposed into two components - a normal and

another in the direction of b>. The unit vector b3 is the unique unit vector field perpendicular to
four dimensional subspace {t,n.b,b>}. The functions ki, k», k3 and ky are the first, second,

third and fourth curvatures of ¥(s). The first, second, third and fourth curvatures measure how
rapidly the curve pulls away in a neighbourhood of s, from the tangent line, from planar curve,

from three dimensional curve and from the four dimensional curve at s, respectively.
Now, using the Frenet Frame we have the derivatives of y as

}/ = ft, ’}'”:f":lqn, }/”:—xlzr—l—x'{n—i—xlxzbl,

' —3K1 Kt + (— K7 + &) — K153 )n + (2] K2 + K1 K53 ) by
+K1K2K3b2,

Y3 = (=3(x})? —axk] + & + ki) + (—6K7 K] + K}

—Ki K5 — 3Kk — 2K Kh )n+ (kP K — K1 K5
+3x7 K + 3K K5 + ki — ki Kby + (3K KaKs
+2K1 K3 K3 + 2K K3 K3 + K1 K2 K3 ) b2

+K) K2 K3Kabs.

_ d@
- a'l'.d;

independent at every point of @ , i.e., ®; @ P> @ Pz @ Py # 0. Thus, the unit normal

Also since @ is regular, the partial derivatives d,, d,, &3, &y, where (D;

& is given by
Py @ Py Pz DDy

[P @b oDz @b

Furthermore, the first, second, and the third binormal vectors of the curve are given by

_ Yoy ey’ ey? beyey oy
Tlrerer ey lBseryer er
 hebherey
T ebherer

by =

b

and the curvatures are obtained by

".b 4 b 5) p
RV T AL R il . )}
Ki KiK2 K1 K2 K3

On the other hand, since the curve y(s) lies on ®, we may write

Y(s) = ®(ur(s5),ua(s),u3(s). usls)).

(3)

(4)

(5)
(6)

(7

) are linearly

vector of

(8)

(9
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Then., we have
4
V() = Y. ou (10)
7'(s) = z¢u”+ E ‘DUL‘PHJ (11
i, j—1
4
'}fl”(_s') Z ;e ”’ +3 z CDUH”HF -+ Z ':Djjkﬂ';u;'ﬂi, (12)
ij=1 i jhk=1

yH(s) = Z D; u[4} +4 E ‘DJumn‘J' +3 E ‘Djunu"
i,j—=1 ij=1
4 4
E ,jiu;'u}ui -+ CDU,_“'M ' u'(u‘; (13)

75 — Eq: w4+ 5 E ®ijulV i+ 10 E D, juelu]
i=1 i j=1 ij=1
4 4
+10 Cl);-jku;”u}u; + 15 E D; i u”u”ui
ijde—1 ik

he—1
4 4
groor o
+10 E Cl),-jkjur- Ly =+ E q):j.ihriu; juiutﬂm

i, jkd=1 i, gkt m=1
(14)
6 5 4
[6) —ch),u )i6 z cDUu( i i+ 15 Z Dyju; )u’;
i=1 ij=1 ij=1
4 (4 4
15 Y @i 10 T @l
i k=1 =
4 4
. romer
+60 E Djjicue; wuy + 20 UU” "u', u‘uf
i,jhk=1 ik i=1
4 4
W
+15 z D jpady + 45 z ,J,“u, uju‘u‘.
i, jhk=1 ijhk i=1
El
o
+15 D jetmt; W UL,
i, jk.tm=1
4
] ’
+ E q’fjk{nmu u u,{u!umun (]S)
i jkdman=1

Definition 2.2. Let ®!, &2, &* and ®* be the regular hypersurfaces, respectively.

unit normal of these hypersurfaces is obtained by

P @ P @ Py @ D)
|| D @ D)) 0Dy @Dy

i=

i=1.2.3.4.

Then the

Assuming that the intersection of these hypersurfaces is a smooth curve ¥(s) with arc length
parametrisation s. Let ¥(sp) = p. Now, if N1, N2.N3, Ny are linearly dependent we non-transversal

intersection at p with the following subcases:

(1) Almost tangential intersection

Na = aN1+bN2+ N3, a,b,c € K.
(2) Tangential intersection

Ny =Ny = N3 = Nj.

In this paper, we shall be discussing only tangential intersection case.

(16)

(17)
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3. Tangential intersection of four parametric hypersurfaces

Here we assume that Ny = N2 = N3 = Ny = N. For the unit tangent vector, the algorithm is
provided by the following theorem:

Theorem 3.1. Let @1, D, D3, Dy be the four parametric hypersurfaces in >, then we have

(D] DY) + (P + adl)e + (P + A D)@
(@] + A D)) + (@) + Aad))e + (D) + D)) @ ||

or
(@] +A1@))e + (DL + Ad]) + (DL + 13D} )@

(@] + A1 Pi)E + (P + APy + (D5 + A D)) @]

or
(@] + 11D} )e + (D + L) )@ + (D] + A3D))

(@] + A @) + (P +A@))B + (DL +A3D))||

Proof. Projecting ¥’ onto the common normal vector, we obtain

(V' .N) = (V' \No) = L} :uﬂ—}: L eV
(V' .Np) = (Y, N3) = L& 1hlju:3 pIpaY AT (18)
(V' \N1) = (¥, Na) = LE hjudu, = z,-= :'g:f'

Replacing v/, w!, r! by u!, we denote the first two equations of (18) as system

el (ul] + e1auy 1ty +€13u1u3 +€]4u]u4+f‘gg{ +€g3u’3u3

+enuhuly +e33(uy) +€34u3u4+ea,4(u4] =0 (19)

2 2
F11(u)” + frouuh + fiauusy + fladuly + fro(uh)” + fraubul
. 2 2
+ fraunuy + f33(u3)” + frauuy + faa(uy)” =0 (20)

respectively, where e;;. fi;. i, j = 1,2,3,4 are scalars.

Since, (t,N) =Y} ;{®! N)u =0, this means that at least one of the products is non-vanishing.

1
Suppose (®},N) # 0, this implies that uy = A1} + Aquh + Aul, where A = RN 12,3,
2 BIN)

Thus and (20) reduces to
2 2 2
myy (1))” + mypauudy + myzduly +moo(uh)” + mozubuly +maz(uy)” =0, (21)

2 2 2
nyp(uy)” +npuiud + nyauus +noa (W) + nozubu’s +n3z(u)” =0 (22)

where m;;,n;;. i, j = 1,2,3 are scalars. Now, if we denote
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r f
1 u " "
E:—,Z, &I:—? when x; = 2 33 #= 0,
u 1y nyy N33
or
r f
u u " "
e=-1, @=-= when xzz‘ R
] ) nyp n33
or
' wh iy 22
e=—-L1 @==2 when x3= T 1#0
3 u3 npp R
we obtain
nrgg&'z +?ﬂ33m2 + m2€ +m 30 +masED +my; = 0, (23)
ngz.‘;"g+n33&)’2+n12£—|—n]3£ﬁ+n23££ﬁ—l—nll =0, -
or
nr11£2+rn33ﬁ52+m138+ﬂr23ﬁ +m3ED + o = 0, (24)
n1]£2—l—m}}ﬁ)’z+n|g£—|—n23£ﬁ+n]3£(ﬁ—l—n23:0, -
or
) 2
mM1E° +mn@~ + m3€ +mayld +mpe@ +maz =0, 25)
7 7 L
R{1E-+ 1@+ 1138 + 13l +npe@ +n33 =0

respectively. We, see that (23),(24) and (23] are pairs of conics with respect to £ and @. The
intersection point (&, ) can be found by any known methods of conic solutions, thus the unit
tangent vector is obtained by

(@] + A1) + (P + Aad])e + (D) + 13d))@

= ; (26)

[(®] +4®)) + (D) + @) )e + (@} + 0] )3

or 1 1 i 1 1 1

(@A Dy )E + (g +AaDy) + (P + A Dy )T o7

(@] +21®))e + (@) + @)) + () + L)) @ ||’

or 1 1 1 1 1 1

_ (@i +APy)e + (D) + APy )@ + (B3 +A3Py) 28)

[ {CD} — l]¢i)£ - (*:Dé - lgtb}i}m + {-:D; + 51,3@&‘1) [’
respectively. -

Note that, we can use this method if »; = 0, i = 1,2.3, or if }:?‘_j=](m§j +n§}.] # 0 and
X1 = x2 = x3 =0, then r may not exist.

Remark 3.1. Depending upon the real intersection points of the conic pairs, we have following

When the conics do not have any point in common p is an isolated contact point.
When the conics have one point in common, ¢ is unique.

When the conics have two or more points in common, then p is a branch point.

When Effj=1 {mEj + n',-zj) =0, then I . ll li vanishes for any values of u, i.e., pisa
higher order contact point. If all the second fundamental coefficients of the hypersurfaces
vanishes at p. then p is a flat point of the hypersurfaces.

o=
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3.1. Curvature vector of tangential intersection
To find the curvature vector, we need to find u‘;’, which needs a system of four linear equa-
tions in wf, wd, uf.ul . Representing v!'. w!. ! in terms of linear combination of u!. Also

denoting ¥ be the curve associated with &'.i = 1,2,3,4 hypersurface. Thus the first three
equations of the required system of equations is given by the following projections

()" Ny = (r)"™ N2,
(" vy = ((rD)" N3, (29)
()" vy = ((r)"™ Vg,

and the last equation is given by {(y!)", (¥!)"} = 0. If the coefficient determinant of the system
II is non-zero, then we can find u{’,x‘ = 1,2.3.4. substituting the results into @ gives the
curvature vector. Consequently, the first curvature can be found from (@) and n, x| can be
found from (3. Otherwise, if the coefficient determinant of (Z9) is zero. then among the first
three equations of (Z9) one or more equations vanishes, or one equation is proportional to
some other. In this case that equation(vanishing) is replaced by ({y']!r,N{) = ((}"'}”,N;}, or
()" N = () N i =2,3.4.

Frr

and the last equation is given by ((y!)", ()"} = 0. If the coefficient determinant of the system
Il is non-zero, then we can find »!, i = 1,2,3,4. substituting the results into gives the
curvature vector. Consequently. the first curvature can be found from @ and n, x| can be
found from (3). Otherwise, if the coefficient determinant of (29) is zero. then among the first
three equations of (2ZY) one or more equations vanishes, or one equation is proportional to
some other. In this case that equation(vanishing) is replaced by {{?']”.,N{} = ((?")”,N,f}, or
(" N = () NI i =2,3,4.

3.2. Second curvature of the tangential intersection

For the the second curvature, we need to find %”. To find this, we need to evaluate u!",i =

1,2,3,4. Hence a system of four linear equations in #!',i = 1,2, 3,4 is needed. On representing
V7w #" in terms of linear combination of «}”, the first three equations are given by the
following system

(W vy = ()Y V),

((rH™Y N = ()W N5), (30)
(Y™ v = (™ V),

and the last equation is obtained from (3) as ((y")',(¥)"") = —x}. If the coefficient matrix
is non-singular, then "

then that equation is replaced by ((y')
(" M) = (") N =2.3.4.

are easily found, while as if any of the equations in @} vanishes,

NG = ()" N, or ()N = ()" NE), or

3.3. Third curvature of the tangential infersection
(

i

CENORNCE

To find the fourth curvature, we calculate u 4},3' = 1,2,3,4. Representing 1: ;Lrin

4)

terms of linear combination of u:-' . then the first three equations are

N = (A, N2),
(M Ny = () 3), (31)
(M Ny = ()P, s).
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Also the last equation depending on uid} is ((T‘)f-. {T]}M)) = —3kkj. If the determinant of
coefficient matrix is non-vanishing, then u:-'d} are easily found, while as if any of the equations
in l vanishes, then that equation is replaced by ((?1}(4),N]["}} = ((f)HJ,N:.U:'}, i=2734
and j=1---4.

3.4. Fourth curvature of the tangential intersection

F1in:zlll§,F to find the fourth curvature, we find u![.SI',.i =1,2,3,4. Writting vl.:j;', w;s;.‘ ) in
. P (5)
terms of linear combination of ;™" we have

7 .
()" V1) = ()" V), (32)
}'6

The fourth equation depending on quj is (Y1), (7' }[5)} = —3(K1)? —4}c{k‘]’+k[14) + k7k3.

If the determinant of coefficient matrix is non-zero, then u:.:ﬁ} are easily found, while as if any of

the equations in Il vanishes, then that equation is replaced by {(?I){ij,Nlm} = ({}‘_)D},N}ﬂ},
i=234 and j=1---5.
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