DATA CLASSIFICATION USING MODIFIED FUZZY CLUSTERING

Nisha Singh
M.Tech Scholar, Rama University, Kanpur

ABSTRACT
Fuzzy Clustering plays a vital role in clustering the real world data where a data item relates to more than one cluster. Where the fuzzy logic based algorithms are always suitable for performing soft clustering tasks. Fuzzy-C Means (FCM) algorithm is very popular algorithm based on fuzzy logic. In fuzzy logic based algorithm, the parameter as exponent for partition matrix, that we have to fix for the clustering task, plays a very important role on the performance of the used algorithm. In this paper, an experimental analysis is done over Modified Fuzzy-C Means (M-FCM) algorithm to observe the impact of this exponent parameter on the performance of the algorithm.

Keywords- Clustering, Modified FCM, Matlab, Soft clustering.

I. INTRODUCTION
Clustering of data is an unsupervised study where we try to categorize our data into separate groups known as “clusters” there. But on doing this, we need to maintain two basic and important features that are: 1. High Cohesive feature and 2. Low coupling feature. According to the first feature, the data items inside a cluster must exhibit high similar properties, and the second property says that data items inside a cluster must be different in nature from the data items in another cluster. The cluster field is again divided into two categories: 1. Exclusive clustering (Hard Clustering. 2. overlapping clustering (Soft clustering). In case of hard clustering, a data item must belong to only one cluster exclusively. Among the popular ones, K-Means is a frequently chosen algorithm for hard clustering task. While, in case of soft clustering task, a membership value is assigned to every object based on which an object may simultaneously belong to more than one cluster. Fuzzy-C Means (FCM) algorithm is a famous soft clustering technique. In this paper, first of all an introduction of soft clustering and FCM algorithm is given, and then we move for the experimental analysis of FCM algorithm by analyzing the impact of different values of exponent for the partition matrix on the performance of the algorithm.

II. SOFT CLUSTERING
Soft clustering is also referred as overlapping clustering or fuzzy logic based clustering [1].In soft clustering, a data item may not belong to particular one cluster exclusively. Depending on the membership value, it may belong to more than one cluster. Sometimes, hard clustering is not fruitful for our clustering task. As for example: In Each Movie dataset used to test recommender systems [2], many movies belong to more than one
genre, such as “Aliens”, which is listed in the action, horror and science fiction genres. Similarly, in case of document categorizations, a single document may belong to more than one category [3]. In such cases, soft clustering is selected for clustering task. In soft clustering, a data item is associated with a set of membership values which indicates the strength of the relation between that data element and a particular cluster [4]. Fuzzy logic is used in the involved mathematical calculations.

III. MODIFIED FUZZY C-MEANS ALGORITHM

Modified Fuzzy C-means (FCM) algorithm is a clustering technique wherein each data point belongs to a cluster to some degree which is specified by a membership value. This overall technique was originally introduced by Jim Bezdek in 1981 as an improvement to the earlier clustering methods [4] [5]. It provides a method of how to partition data points that populate some multidimensional space into a specific number of defined clusters. The main advantage of modified fuzzy c – means clustering is that it allows gradual membership of data points to clusters measured as degrees within the boundary [0,1]. This gives the flexibility to express those data points that can belong to more than one cluster.

It is based on minimization of the defined objective function. Fuzzy matrix μ with n rows and c columns are used to describe fuzzy clustering of different objects where n means numbers of data and c for the numbers of clusters. In the matrix μ the element in i-th row and j-th column, the element is \(\mu_{ij} \).

\[
\mu_{ij} \in [0,1], \quad i=1,2,\ldots,n \quad ; \quad j=1,2,\ldots,c
\]

\[
\sum_{j=1}^{c} \mu_{ij} = 1
\]

\[
0 < \sum_{i=1}^{n} \mu_{ij} < n, \quad j=1,2,\ldots,c
\]

The objective function is minimization of fuzzy clustering equation :

\[
J_m = \sum_{i=1}^{n} \left(\sum_{j=1}^{c} \mu_{ij}^m \right) \left\| x_i - c_j \right\|^2
\]

Where, \(c_j \) is the cluster and \(m \) is the fuzzy index governing the influences of membership grades, where \(m \) is set to 2.1.

\[
\mu_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{\left\| x_i - c_k \right\|}{\left\| x_i - c_k \right\|} \right)^{\frac{2}{m-1}}}
\]

\[
c_j = \left(\sum_{i=1}^{n} \mu_{ij}^m \cdot x_i \right) / \left(\sum_{i=1}^{n} \mu_{ij}^m \right)
\]

Where, \(\mu_{ij} \) is used to evaluate membership values. And it depends on value of \(m \), high value of \(m \) will provide the lower value of \(\mu_{ij} \).

From the sample points \(x_i \) to the cluster center \(a_j \), the Euclidean distance is measured by the term used here in equation (4) as \(\left\| x_i - a_j \right\|^2 \).

Here in given equation the iteration gets terminated when, \(\max_{ij} \left| \mu_{ij}^{(k+1)} - \mu_{ij}^{(k)} \right| < \epsilon \), where \(\epsilon \) is a termination criterion between 0 and 1, whereas \(k \) are the iteration steps.

Algorithm for the modified fuzzy c-means strategy to follow is :

1. Initialize \(U=[\mu_{ij}] \) matrix, \(U^{(0)} \)
2. At \(k\)-step: calculate centers vectors \(C^{(k)} = [c_j] \) with \(U^{(k)} \)
c_j = \left(\sum_{i=1}^{N} \mu_{ij}^m \cdot x_i \right) / \left(\sum_{i=1}^{N} \mu_{ij}^m \right) \quad \text{//set m=2.1}

3. Update \(U^{(k)} \), \(U^{(k+1)} \)

\[\mu_{ij} = \frac{1}{\sum_{k=1}^{N} \left(\frac{||x_i - c_j||}{||x_i - c_k||} \right)^{\frac{1}{m-1}}} \]

4. If \(||U^{(k+1)} - U^{(k)}|| < \epsilon \) then STOP; Otherwise return to step 2.

where, \(a_j \) is the \(j^{th} \) element and m is the fuzzy index governing the influences of membership grades, where m is set to 2.1.

From the sample points \(x_i \) to the cluster center \(a_j \), the Euclidean distance is measured by the term used here in equation (4) as \(||x_i - a_j||^2 \). where m is a constant known as fuzzifier (or index of fuzziness) as it controls the fuzzyness of resulting contents. The objective function is minimization of fuzzy clustering equation.

In this paper, research is focusing basically on the value of the exponent for the partition matrix. Because, the modified criteria of FCM is determined by the value of this parameter. Value of this exponent determines the degree of fuzziness. Commonly, it is assigned a value which is greater than 1. When the exponent value is tending to infinity, the degree of fuzziness is increasing. In the next section, we will experimentally analyze the FCM algorithm with different values of exponent for the partition matrix using Matlab.

IV. VALIDATION

The validation step is related to the procedure for the verification of fuzzy zone, as it fits best to the whole database. Usually, the cluster validity indexes are calculated in this step measure statistical properties of clustering results, usually the distance within cluster or among clusters. In this step fitting includes other fields also as a fixed number of clusters and the shapes of cluster found.

This study has validated the set of objects via two types of validity indices described as following:

(a) Partition Coefficient (PC): calculates the value of "overlapping" between clusters it is defined by bezdec et al. (1984) as the given equation:

\[
PC(c) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} (\mu_{ij})^2
\]

where \(\mu_{ij} \) is membership function of data joint j in cluster i.

(b) Classification Entropy (CE): according to the study of cheng et al. (1998), CE measures the fuzziness of the cluster partition only, which is same as measuring the previous coefficient.

\[
CE(c) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \mu_{ij} \log(\mu_{ij})
\]

V. EXPERIMENTAL RESULTS

The whole experiment has been done using Matlab R2013a (version 8.1). The basic characteristics of these twelve datasets are summarized with the brief description of their attributes and instances with no. of clusters or classes for which they are going to be clustered, in Table 1.
Here, dataset used as iris flower dataset, monk_2, Wisconsin, titanic, Haber, Hayes, Balance, User_Hamdi, Page_Block, Banana, Teaching Assistant Evaluation (TAE), Lenses are total twelve dataset with no missing value, over which the work has been performed. These are taken from various benchmark datavis databases where some of them are taken from UCI repository for the testing of effectiveness of modified fuzzy c-mean technique.

In order to evaluate the high performance of proposed method, performance test is illustrated for the proposed modified fuzzy c-means clustering algorithm, and the proposed clustering algorithm results (for the value of exponent at 2.0 and 2.1) are compared with that of other state-of-the-art approach. Basic Fuzzy c-means algorithm which is shown in (table 2) with its effectiveness measured in terms of %correctness for the value assumed of exponent variable (m=2.1).

In the given table comparison has been done and for that comparison also the graph has been plotted in figure 1.

Table 2. Clustering results obtained for data sets

According to this table 2 graph is plotted as following.
VI. CONCLUSIONS

In basic Fuzzy clustering, which constitute the oldest component of soft computing, are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and also can provide approximate solutions faster. And they have been mainly interacted with discovery of association rules and functional dependencies and image retrieval. And there is effect in the output also if we vary the value of exponent as 2.0 which is standard value assigned to it but in some cases it is not compulsory to take same value of exponent every time. It means we can get effective result on varying the value of exponent in comparison to being stuck to a constant value as in covered problem in this paper it is found that at exponent value 2.1 results are quite good in terms of clustered data as well as objective function value is also achieved minimal as compare to previous rigid value. Here the complete working is moving around for complete data sets with no missing value. In future goal will be to perform same experiment for datasets with missing values for effectiveness.

REFERENCES: