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ABSTRACT  

The ECC Cryptosystem is implemented on FPGA for sensor nodes that are used in Wireless Sensor Networks in 

which nodes are FPGA based. Scalar or Point multiplication, the most important operation of ECC is carried 

out with double and add algorithm which is implemented using Karatsuba Multiplier. The Karatsuba Multiplier 

designed for basic finite field multiplication operations at lower levels of design increased the overall 

performance of the cryptosystem in terms of area, speed, operating frequency and power consumption. The 

processor is optimized for scalar multiplications with Lopez Dahab and Mixed coordinate systems. This work 

concentrates on lightweight implementation of ECC that is suitable for Wireless Sensor Nodes. The previous 

implementations mainly concentrates only on Point multiplication where as in our work we have implemented 

complete ECC cryptosystem with 40% less device utilization on FPGA Artix-7xc7a100t-2csg324 and the speed 

achieved is 432MHz.  

Keywords: Elliptic curve cryptography, FPGA, Karatsuba Multiplier, Point Multiplication, 

Wireless Sensor Networks 

 

I. INTRODUCTION 

The special needs of Wireless Sensor Networks (WSNs) such as security issues, communication protocols and 

hardware platforms, require an intense research activity. Different applications employed on the same WSNs 

environment will have diverse security requirements, inferring the necessity of using dissimilar security 

algorithms. Encryption is a sensible countermeasure to protect data, although it increases new processing load to 

the nodes. Conventional microcontrollers found sensor nodes do not provide adequate computation power to 

process public key cryptographic operations [1][2]. The practice and potentials of FPGAs in sensor node 

architectures and their applications are explored in [2].  

Neal Koblitz and Victor Miller proposed Elliptic Curve Cryptography (ECC) in the year 1985. At present, ECC 

is the most efficient and preferred PKC system with shorter keys. The security is to concentrate the difficulty of 

solving Elliptic Curve Discrete Logarithmic Problem (ECDLP)[3]. ECC is attaining popularity since it provides 

similar security with significantly smaller key lengths. This feature makes it suitable for resource constrained 

devices like wireless sensor nodes. 
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Motivation: Now-a-days Field Programmable Gate Arrays are crossing the 28 nanometer CMOS threshold  that 

offer enhanced platforms which adds additional processing competences to a typical sensor node. Due to 

inadequate resources of the sensor nodes security is considered to be expensive, the speed and area are more 

notable in WSNs. Thus, in order to increase the speed and minimize area, while utilizing the available resources, 

it is important to use multiplier which has better performance with respect to security algorithms. Karatsuba 

multiplier has been employed to allow the encryption and decryption of messages to speed up ECC algorithm 

with minimum device utilization [2-4]. 

Organization: In Section II, research works related to security techniques, public key cryptography and ECC 

cryptography, different multiplication algorithms are explained. In Section III, implementation is described with 

Karatsuba multiplier techniques, ECC Cryptography along with Algorithm and Performance Evaluation. Section 

IV contains Conclusions. 

 

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS  

 The modules discussed in this section are designed and implemented in VHDL code and tested on ISE 13.2 

software using XILINX FPGA Artix-7 xc7a100t-2csg324 device and simulated with Modelsim Simulator. This 

FPGA is advised for implementation of Public Key Cryptography as it supports different degrees of security and 

high-speed execution for GF computations. The static power consumption is very less compared to other FPGAs 

[2].  

2.1   Elliptic Curve Cryptography  

In the latter decade, the method of hardware implementation of ECC algorithm distinguished a much focused 

competition, due to essentiality of the constraints i.e., security, speed and area. The performance of an ECC 

algorithm depends competently on the arithmetic in the fundamental Galois Field (GF). The Galois Fields are 

prime order fields GF (p) or Characteristic two fields or Binary fields GF (2
m
). Both provides equivalent level of 

security, GF (2
m
) is simple and can be implemented in hardware. In the GF, addition and subtraction are 

equivalently achieved by modulo-2 arithmetic.  

An Elliptic Curve over the Binary field GF (2
m
) considered is  

                                                    y
2
+x*y=x

2
+ax

2
+b                                                 (1) 

Where, a, b  GF (2
m
),  b≠0. Set of points on E (GF (2

m
)) also comprises point O, which is point at infinity. 

Point on the elliptic curve is a couple of elements x, y  GF (2
m
) that fulfill P=(x, y)   E (GF (2

m
)) of equation 

(1). 

The input data considered in this work is 8 bits. It is encoded to 192 bit point of the elliptic curve p(x, y). It is 

projected as p(x, y, z) before performing encryption. Encryption is carried out with 192 bit point in projective 

p(x, y, z) to produce cipher text, which double secures the data. Decoding is performed at decryption end to get 

back the original text of 8 bits. The point addition and point doubling are performed with different coordinate 

systems and are discussed in the following section. 
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2.2    Field Arithmetic and Coordinate Systems 

In affine coordinate system a point on the elliptic curve is represented as p(x, y). To perform field arithmetic 

operations i.e., point doubling and point addition, field division is required in affine coordinate system. To avoid 

this time consuming operation, projective coordinate systems are adopted for point doubling and point addition 

operation which significantly affects the performance of scalar multiplication in turn the whole ECC 

cryptographic operation [3]. 

The equation (1) in projective coordinates is given by,  

                                               y
2
z+xyz=x

3
+ax

2
z+bz

3
                                                   (2) 

Projective coordinates encompass representing a curve point as triplet x,y,z  E (GF (2
m
)), i.e., p(x, y, z). When 

comparing with different popular projective coordinate systems, the computational cost of Lopez and Dahab 

(LD) projective coordinate is found to be lesser and most logical for hardware implementations. In this work, 

Scalar multiplication operations are performed with point doubling in LD and point addition in mixed 

coordinates. 

Point Doubling: It is the addition of a point p(x, y) on elliptic curve to itself to attain a new point q(x, y) on the 

same curve. LD projective coordinates are employed for point doubling in which p(x, y) is projected to p(x1, y1, 

z1). The output is obtained as q(x2, y2, z2) is performed with following equations: 

 

                                                   x2=(3x1
2
+az1

4
)-8y1

2
x1                                           (3) 

                                               y2=(3x1
2
+ az1

4
)(4x1

2
y1

2
-x3)-8y1

4
                              (4) 

                                                            z2=2y1z1                                                         (5) 

 Point Addition: It is addition of two points’ p(x, y) and q (x, y) on an elliptic curve to get another point r(x, y) on 

the same elliptic curve. Mixed coordinates is utilized, where one point (x), is in affine and one more point (y) in 

LD projective coordinate. The normal elliptic point (x, y) is projected to p(x1, y1, z1) and the other point is in 

affine i.e., p(x2, y2). Point addition to obtain p(x3, y3, z3) is performed with following equations:  

                      x3=(y2z13-y2)
2
-(x2z1

2
-x1)

2
(x1+x3z1

2
)                                                    (6) 

                      y3=(y2z1
3
-y2)-x1(x1z1

2
-x1)2-y1(x2z1

2
-x1)

3
                                            (7) 

                      z3=(x2z1
2
-x1)z1                                                                                        (8) 

The multiplications involved in Point doubling and Point addition are performed using Karatsuba multiplier 

which comprises three types of computation divide, conquer and combine [4]. Number of finite field operations 

required for Group operations are given in Table 1.                                                           

Table 1.  Finite Field Operations. 

Group Operations 
Squaring              Addition         Multiplication 

Point Addition       3                        7                                7 

Point Doubling       5                        5                              8 
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2.3   Karatsuba Multiplier 

The effective implementations of finite field operations can be established by performing additions, 

multiplications and inversion that greatly impacts the performance of ECC Cryptosystem. There are several 

methods to implement the finite field multiplication, out of which Karatsuba algorithm is termed as a fast 

multiplication algorithm published in the year 1962. In conventional multiplication method, multiplying two 

integers of n-bits takes O(n
2
) bit operations. Numerous algorithms are available to improve O(n

2
) multiplication.   

Karatsuba multiplication algorithm uses divide and conquer technique and requires O(n
log 3

) bit operations, to 

multiply two integers of n-bits. Karatsuba algorithm accomplishes multiplication operation by substituting some 

multiplications with subtraction and addition operations which are less expensive. Due to recursion overhead 

Karatsuba algorithm is slower than classical multiplication for small inputs and it is more proficient for large 

numbers. Karatsuba multiplier is used as the finite field multiplier in point addition and doubling modules [4]. 

2.4   Scalar Point Multiplication  

Scalar point multiplication is the process of computing Q = k.P, where Q, P  E (GF (2
m
)) and k is a scalar 

value. It is performed by repetitive point additions and doubling which is the basic cryptographic operations. 

There are numerous algorithms for performing Elliptic Curve Scalar Point Multiplication. Scalar Point 

Multiplication performed in the design is given in Algorithm 1. The multiplication module used [5] in our 

design is shown in the Figure 1. Basically, it is double and add method, built on the binary expansion of the 

integer k. In this algorithm point doubling is performed in each iteration of k. In any iteration, if the particular bit 

of k is 1, then a point addition is also performed [4]. 

Input to the module is point P(x, y, z) and scalar k, where, k has a size of t bits. The output obtained after 

multiplication is K.P. Multiplication of a scalar value K with a point P and 2P output from point doubling block 

is used for further cascading of modules. Multiplication module used in our implementation is shown in the 

Fig.1. The module consists of both cascaded point doubling (PD) and point addition (PA) blocks. A point P is 

multiplied in every stage to produce 2P, 3P, 4P…., 2t-1, 2tP [5]. 

 

Figure 1: Scalar Point Multiplication Module[5]. 
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Algorithm 1: Scalar Point Multiplication 

Input: Point on the curve P(x, y, z),  

t-bit integer  

Output: Point on the Curve Q(xo, yo, zo)= K*P(x, y, z) 

Q(xo, yo, zo)= P(x, y, z) // Q=P 

For i=t-1 to 0 do 

P(x,y,z)=point double(x,y,z) //P=2P 

If Ki=1 then //P=P+Q 

P(x,y,z)=pointadd(xo, yo,  zo, x, y, z) 

End if 

End for 

Return Q(xo, yo, zo) 

The Scalar Point Multiplication is represented as Q = K.P. It is given by,  

K*P(x, y, z) = (2
t-1

 Kt-1+2
t-2

 Kt-2+…+2
2
 K2+2 K1+ K0                                          (9) 

 

K*P(x, y, z) = (2
t-1

 P(x, y, z)Kt-1+2
t-2

 P(x, y, z)Kt-2+…+2
2
 P(x, y, z)K2+2 P(x, y, z)K1+ K0   P(x, y, z)                                                                                                 

(10)                                        

 

Where, P(x, y, z) is a Point on the Elliptic Curve represented as projective point in design. K.P with respect to 

the Figure 1 is given as: 

                                                         (11)               

    Where, Bi =2
i 
P(x, y, z)  for i = 0, 1, 2 …t-1. 

The Controlled Buffers (CB) generate 2
i
Pki for i=0 to (t–1).The bit ki of K and 2

i
 P are the inputs to the 

respective CB. The output of each CB is one of the inputs to the corresponding Point Adder block. Point 

addition in every stage depends on the value of k bit. If k=1, present value of CB and previous value of CB is 

added. If k=0, then only previous value of the controlled block is added with next stage of CB. The output t2
t
P 

from the last PD block is shown, where 2
t
P provides cascading with other modules. 

2.5   Encryption and Decryption 

2.5.1 Key Generation. In Elliptic Curve Diffie-Hellman Protocol, the elliptic curve equation and the base point 

P(x,y) and are made public.  Private key of User A is kA which is a scalar value, multiplied to point P(x,y) to 

generate public key.  User A’s public key is equal to kA.* P(x,y). Similarly, private key of User B, is kB and 

kB*P(x,y)  is user B’s public key. The shared secret key (SSK) between two parties A and B is easily calculated 

by 

SSK(x,y)= kA( kB*P(x,y) )= kB (kA.* P(x,y))                                                             (12) 

The Processes involved in Scalar Point Multiplication is represented in Fig 2. 
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Figure 2: Processes Involved in Point Multiplication 

2.5.2 Encryption.  The message to be encoded is embedded into the x-coordinate of a point on the elliptic 

curve (Pm (xm, ym ) ). While user A or User B is sending the message to the other, shared secret key has to be 

added to the message M(x,y) to produce the Cipher text C(x,y). 

C(x,y)=M(x,y)+SSK(x,y)                                                                                           (13) 

 

2.5.3 Decryption. In decryption the shared secret key is subtracted from the Cipher text C(x,y) to obtain 

plaintext message M(x,y). 

M(x,y)= C(x,y)- SSK(x,y)      

                                                                                      (14) 

III. RESULTS AND DISCUSSION 

3.1   Point Addition and Point Doubling  

The Point addition operation output is shown in Fig.3, displays a point p(x3, y3, z3) added to  p(x4, y4, z4) to 

produce p(x5, y5, z5). 

 

Figure 3: Timing Diagram of Point Addition Operation 
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Point doubling operation output with timing diagram is shown in Fig 4. The point considered for doubling is 

p(x1, y1, z1) and the output point obtained is p(x2, y2, z2). 

 

Figure 4: Timing Diagram of Point Doubling Operation 

 

3.2   Point Multiplication (Scalar Multiplication) 

The point multiplication module performs the major operation in ECC. This module includes point addition and 

doubling operations. Key generation for sender and receiver is performed using the point multiplication. Fig 5 

shows synthesized result for Point Multiplication. 

 

3.3 Karatsuba Multiplier  

The Karatsuba Multiplier plays an important role in multiplying two 192 bit data in point addition and point 

doubling operations. The timing diagram with results is shown in Fig 6. The two input numbers are X, Y and R is 

the result. 

 

Figure 5: Timing Diagram of Point Multiplication Operation 
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Figure 6: Results of Karatsuba Multiplier 

3.3. Encryption and Decryption   

The Encryption module encrypts the plain text M(x, y) to Cipher text C(x, y). The synthesized result is shown in 

the Fig 7 and Figure 8 shows RTL schematic and simulation result respectively. The original text i.e., 8bit data 

(00010101) and cipher text C(x, y) 192 bit are shown in the Fig 8. 

The decryption module decrypts the cipher text C(x, y) back to plain text of 8 bit value. The synthesized result is 

shown in Fig 9. From the cipher text C(x, y) the original text of 8 bit (00010101) is recovered. 

 

Figure 7: Schematic of Encryption Module 

 

3.3 Analysis of the ECC Cryptosystem   

William et al., [6] designs a pipelined ASIP for ECC using FPGA, XCV2600E-FG1158-8 the hardware (area) 

consumed by point multiplier and ASIP are compared with our work.  In [7] Khaleel et al.,   presents Folded 

Modular Multiplier with Virtex-4 as target device. Comparing the time delay obtained by our work with [7] is 

Point doubling (2.610µsec), Point Addition (4.720 µsec) and Point Multiplication (1.078 msec) shows that the 

computation is performed faster and there is no combinational path delay. 

 



 

1191 | P a g e  
 

 

Figure 8: Simulation Results of Encryption and Decryption 

 

Figure 9: Simulation Results of Decryption module 

Kaleel et al., [8] implements ECC Cryptosystem using Xilinx XC4VLX200 FPGA device. According to Portilla 

et al., [9] the FPGA based ECC implementation requires less energy compared to a low power microcontroller 

implementation. Benaissa et al., [10] extended GPP based implementation to ASIPs by developing novel word 

level algorithms for multiplication and squaring. Azarderaksh et al., [11] use a number of digit serial field 

multipliers to attain fast scalar multiplication. 

The hardware required for implementation for Point multiplication in our work is 40% less than previous 

implementations. Our experimental results of device utilization are compared with [6-13] in Table 2 and Table 

3. There is no combinational path delay for Group and Elliptic Curve Operations which increases the speed of 

Encryption and Decryption Process. Most of the previous works concentrates on the Point Multiplication rather 
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than complete ECC system. In this work complete ECC Cryptosystem with 40% less device utilization is 

achieved with a speed of 432MHz. 

Table 2: Comparison of Device Utilization for Point Multiplier  

Author 
Field(m)      FFs             LUTs                      Slices 

William[6]                    163            4686               26930           15368 

Chelton[6]                   163           7962             26364           16209 

Rebeiro[12]   

Azarderaksh 

Sujoy[13]  

Hossein[14]   

Our Work                                                                                                                       

 

233              -                 37073     

163              -                 22815         

163              -                 10195        

163              -                 30895                      

192             504               9788                        

          19209 

         122834 

            3513 

          16544 

         690 

Table 3: Comparison of Device Utilization for ECC  

Author 
Field(m)      Device        LUTs                  Frequency 

Xining 128            XC4VLX60  15168           125 MHz 

Kaleel [8]                   256           XC4VLX20  16209           143 MHz 

Our Work                   192           XC7A100T    9915      432 MHz 

 

IV. CONCLUSIONS 

We have performed both Point Multiplication and ECC on Artix7 FPGA that is advised platform for Public Key 

Cryptography. The experimental results show that the area utilized by both Point Multiplier and ECC is around 

40% less than the previous implementations. Hence, this work suitable for resource constrained devices like 

Wireless Sensor Nodes. 
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