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ABSTRACT 

In this paper, we shall use a parameter   and obtain Bernstein-type inequality for rational functions with 

prescribed poles. The result shall generalize as well as refine some already proved results in this direction. 
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I .INTRODUCTION 

Let nP  denote the class of all complex polynomials of degree at most n . If nPP then concerning the 

estimate of 1|||)(|  zonzP , we have 

|)(|max|)(|
1||

zPzP
z 

           …………… (1)                                                                                          

Inequality (1) is a famous result due to Bernstein [2], who proved it in 1912. 

It is worth to mention that equality holds in (1) if and only if |)(| zP  has all its zeros at the origin, so it is 

natural to seek improvements under appropriate assumption on the zeros of |)(| zP . If we restrict ourselves to 

the class of polynomials |)(| zP  having no zeros  in 1|| z , then (1) can be replaced by 

|)(|max
2

|)(|max
1||1||

zP
n

zP
zz 

           …………… (2)        

Where as if  |)(| zP  has no zeros in 1|| z , then 

|)(|max
2

|)(|max
1||1||

zP
n

zP
zz 

           …………… (3)   

Inequality (2) was conjectured by soErd   and later verified by Lax [3], whereas inequality (3) is due to 

naTur  [4] .     

Li,  Mohapatra and Rodriguez [5] gave a new perspective to the above inequalities (1), (2), (3) and extended 

them to rational functions with prescribed poles. Essentially, in the inequalities referred to, they replaced the 

polynomial )(zP  by a rational function )(zr  with prescribed poles naaa ,...,, 21  and
nz  by a Blashke 

product )(zB . Before proceeding towards their results, let us introduce the set of rational functions involved. 

For Ca j   with nj ,...,2,1 , let  
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Then nR  is the set of rational functions with poles naaa ...,,, 21  at most n and with finite limit at  . We 

shall always assume that these poles lie in .1|| z  

Note that nRzB )(  and 1)( zB  for 1|| z . For nR
zW

zP
zr 

)(

)(
)( , the conjugate transpose )(zr   

of r is defined by )1()()(
z

rzBzr  . 

As an extension of (2) to rational functions, Li, Mohapatra and Rodriguez [5] showed that if nRr , and 

0)( zr  in 1|| z , then 

.|)(|sup
2

|)('|
|)(|

1||

zr
zB

zr
z 

          …………… (4)   

 

II  MAIN RESULTS 

In this paper, we establish Bernstein-type inequality for rational functions with prescribed poles which improves 

the result of Li, Mohapatra and Rodriguez [5]. More precisely, we prove 

Theorem 1.  Suppose nRr  and all the n  zeros of r  lie in 1|| z . If 
)(

)(
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)( , then for 1|| z , 
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Where |)(|max||)(||
1||

zrzr
z 

 . 

The result is best possible and equality in (5) holds for .1||,)()(  zBzr  

Remark 1. Since all the zeros of 
)(

)(
)(

zW

zP
zr   and hence of 




n

j

j

j zczP
0

)(  lie in 1|| z , therefore, 

|||| 0 ncc  , which shows that Theorem 1 is an improvement of (4). 
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III.LEMMAS 

For the proofs of these theorems, we shall make use of the following lemmas. 

Lemma 1.  If nRr  and )1()()(
z

rzBzr  ,  then for 1|| z , we have 

  .|)(|max|)('||)(||)(|
1||

zrzBzrzr
z 




  

The above lemma is due to Li, Mohapatra and Rodrigues[5]. 

 

Lemma 2.  Suppose nRr  be such that 
)(

)(
)(

zW

zP
zr   where 
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
n
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j zczP
0

)(  and all the zeros 

of r  lie in 1|| z . Then for 1|| z , we have 

 .|)(|
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)(
Re zB
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The above lemma is due to Aziz and Shah [1]. 

 

IV  PROOF OF THEOREM 1 

Since 
)(

)(
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j zczP
0

)( and )(zr  has all its zeros in 1|| z . Since 
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and therefore for 1|| z  (so that 
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z
1

 ), we get 
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                       …………… (6)                       

Also 

0|)(|
)(

)(



zB

zB

zBz
 

we get from (6) for 1|| z  with 0)( zr , 
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which gives by using Lemma 2 for 1|| z  with 0)( zr , that 
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Which implies for 1|| z , that 
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Combining this with Lemma 1, we get for 1|| z , that 
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or equivalently 
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which on using the fact that 0|)(|  zB  and after a simplification gives for 1|| z , that 
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This completes the proof of Theorem 1. 
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