EXTENSION OF CERTAIN BERNSTEIN-TYPE INEQUALITIES TO RATIONAL FUNCTIONS

Ajaz Wani

Department of Mathematics, University of Kashmir, Srinagar (India)

ABSTRACT

In this paper, we shall use a parameter β and obtain Bernstein-type inequality for rational functions with prescribed poles. The result shall generalize as well as refine some already proved results in this direction. **MATHEMATICS SUBJECT CLASSIFICATION:** 30A10, 30C10, 30D15. keywords and phrases: Rational function, Polynomial, Poles, Zeros.

I.INTRODUCTION

Let P_n denote the class of all complex polynomials of degree at most n. If $P \in P_n$ then concerning the estimate of |P'(z)| on |z|=1, we have

 $|P'(z)| \le \max_{|z|=1} |P(z)|$ (1)

Inequality (1) is a famous result due to Bernstein [2], who proved it in 1912.

It is worth to mention that equality holds in (1) if and only if |P(z)| has all its zeros at the origin, so it is natural to seek improvements under appropriate assumption on the zeros of |P(z)|. If we restrict ourselves to the class of polynomials |P(z)| having no zeros in |z| < 1, then (1) can be replaced by

Where as if |P(z)| has no zeros in |z| > 1, then

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{2} \max_{|z|=1} |P(z)|$$
(3)

Inequality (2) was conjectured by $Erd\ddot{o}s$ and later verified by Lax [3], whereas inequality (3) is due to Tura'n [4].

Li, Mohapatra and Rodriguez [5] gave a new perspective to the above inequalities (1), (2), (3) and extended them to rational functions with prescribed poles. Essentially, in the inequalities referred to, they replaced the polynomial P(z) by a rational function r(z) with prescribed poles $a_1, a_2, ..., a_n$ and z^n by a <u>Blashke</u> product B(z). Before proceeding towards their results, let us introduce the set of rational functions involved. For $a_j \in C$ with j = 1, 2, ..., n, let

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

$$W(z) = \prod_{j=1}^{n} (z - a_j)$$

And let

$$B(z) = \prod_{j=1}^{n} \frac{(1 - \overline{a}_j z)}{(z - a_j)}, \quad R_n = R_n(a_1, a_2, ..., a_n) = \left\{ \frac{P(z)}{W(z)}, \ P \in P_n \right\}.$$

Then R_n is the set of rational functions with poles $a_1, a_2, ..., a_n$ at most n and with finite limit at ∞ . We shall always assume that these poles lie in |z| > 1.

Note that $B(z) \in R_n$ and B(z) = 1 for |z| = 1. For $r(z) = \frac{P(z)}{W(z)} \in R_n$, the conjugate transpose r * (z)

of r is defined by $r * (z) = B(z) \overline{r(\frac{1}{z})}$.

As an extension of (2) to rational functions, Li, Mohapatra and Rodriguez [5] showed that if $r \in R_n$, and $r(z) \neq 0$ in |z| < 1, then

$$|r'(z)| \leq \frac{|B'(z)|}{2} \sup_{|z|=1} |r(z)|.$$
 (4)

II MAIN RESULTS

In this paper, we establish Bernstein-type inequality for rational functions with prescribed poles which improves the result of Li, Mohapatra and Rodriguez [5]. More precisely, we prove

Theorem 1. Suppose $r \in R_n$ and all the *n* zeros of *r* lie in $|z| \ge 1$. If $r(z) = \frac{P(z)}{W(z)}$, where

Where $|| r(z) || = \max_{|z|=1} |r(z)|$.

The result is best possible and equality in (5) holds for $r(z) = B(z) + \lambda$, $|\lambda| = 1$.

Remark 1. Since all the zeros of $r(z) = \frac{P(z)}{W(z)}$ and hence of $P(z) = \sum_{j=0}^{n} c_j z^j$ lie in $|z| \ge 1$, therefore,

 $|c_0| \ge |c_n|$, which shows that Theorem 1 is an improvement of (4).

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

III.LEMMAS

For the proofs of these theorems, we shall make use of the following lemmas.

Lemma 1. If $r \in R_n$ and $r^*(z) = B(z)\overline{r(\frac{1}{z})}$, then for |z|=1, we have

$$|r'(z)| + |(r*(z))'| \le |B'(z)| \max_{|z|=1} |r(z)|$$

The above lemma is due to Li, Mohapatra and Rodrigues[5].

Lemma 2. Suppose $r \in R_n$ be such that $r(z) = \frac{P(z)}{W(z)}$ where $P(z) = \sum_{j=0}^n c_j z^j$ and all the zeros

of r lie in |z| > 1. Then for |z| = 1, we have

$$\operatorname{Re}\left(\frac{zr'(z)}{r(z)}\right) \leq \frac{1}{2} \left\{ |B'(z)| \right\}.$$

The above lemma is due to Aziz and Shah [1].

IV PROOF OF THEOREM 1

Since $r(z) = \frac{P(z)}{W(z)}$ where $P(z) = \sum_{j=0}^{n} c_j z^j$ and r(z) has all its zeros in $|z| \ge 1$. Since $r * (z) = B(z)\overline{r(\frac{1}{\overline{z}})}$, we have $z(r * (z))' = zB'(z)\overline{r(\frac{1}{\overline{z}})} - \frac{B(z)}{2}\overline{r'(\frac{1}{\overline{z}})},$ and therefore for |z| = 1 (so that $z = \frac{1}{\overline{z}}$), we get $|(r * (z))'| = |zB'(z)\overline{r(z)} - B(z)\overline{zr'(z)}|,$ $= |B(z)| \left| \frac{zB'(z)}{B(z)}\overline{r(z)} - \overline{zr'(z)} \right|.$ (6)

Also

$$\frac{zB'(z)}{B(z)} = |B'(z)| > 0$$

we get from (6) for |z|=1 with $r(z) \neq 0$,

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

$$\frac{z(r*(z))'}{r(z)}\Big|^{2} = \left| B'(z) | -\frac{zr'(z)}{r(z)} \right|^{2}$$
$$= |B'(z)|^{2} + \left| \frac{zr'(z)}{r(z)} \right|^{2} - 2|B'(z)|\operatorname{Re}\left(\frac{zr'(z)}{r(z)}\right),$$

which gives by using Lemma 2 for |z|=1 with $r(z) \neq 0$, that

$$\left|\frac{z(r*(z))'}{r(z)}\right|^{2} = |B'(z)|^{2} + \left|\frac{zr'(z)}{r(z)}\right|^{2} - 2|B'(z)|\left\{|B'(z)| - \frac{|c_{0}| - |c_{n}|}{|c_{0}| + |c_{n}|}\right\}$$
$$= \left|\frac{zr'(z)}{r(z)}\right|^{2} + \left(\frac{|c_{0}| - |c_{n}|}{|c_{0}| + |c_{n}|}\right)|B'(z)|.$$

Which implies for |z|=1, that

$$|r'(z)|^{2} + \left(\frac{|c_{0}| - |c_{n}|}{|c_{0}| + |c_{n}|}\right) |B'(z)||r(z)|^{2} \leq |(r * (z))'|^{2}.$$

Combining this with Lemma 1, we get for |z|=1, that

$$|r'(z)| + \left\{ |r'(z)|^{2} + \left(\frac{|c_{0}| - |c_{n}|}{|c_{0}| + |c_{n}|} \right) |B'(z)| |r(z)|^{2} \le |(r*(z))'|^{2} \right\}^{\frac{1}{2}}$$

$$\le |r'(z)| + |(r*(z))'|$$

$$\le |B'(z)| ||r(z)|,$$

or equivalently

$$|r'(z)|^{2} + \left(\frac{|c_{0}| - |c_{n}|}{|c_{0}| + |c_{n}|}\right) |B'(z)||r(z)|^{2} \leq |(r*(z))'|^{2} \leq |B'(z)|^{2} ||r(z)||^{2} - 2|B'(z)||r'(z)|||r(z)|| + |r'(z)|^{2},$$

which on using the fact that $|B'(z)| \neq 0$ and after a simplification gives for |z|=1, that

$$|r'(z)| \leq \frac{1}{2} \left\{ |B'(z)| + \left(\frac{|c_n| - |c_0|}{|c_n| + |c_0|}\right) \left(\frac{|r(z)|^2}{||r(z)||^2}\right) \right\} ||r(z)||,$$

This completes the proof of Theorem 1.

REFERENCES

 A. Aziz and W. M. Shah, Some refinements of Bernstein-type inequalities for rational functions, Glas. Mate., 32(1997), 29-37.

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

- [2] S. Bernstein, Sur e' ordre de la meilleure approximation des functions continues par des polynomes de deg re' donne', Mem. Acad. R. Belg., 4(1912), 1-103.
- [3] P. D. Lax, Proof of a conjecture of P. Erd• os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
- [4] P. Tura'n Über die Ableitung von Polynomen, Compos. Math., 7(1939), 89-95.
- [5] Xin Li, R. N. Mohapatra and R. S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc., 51(1995), 523-531.