
 

469 | P a g e  

 

ASSESSING BURR TYPE III SOFTWARE QUALITY 

USING SPC  

Ch.Smitha Chowdary
1
, Dr.R.Satya Prasad

2
, Dr.R.Kiran Kumar

3
 

 

1
Research Scholar, Dept. of Computer Science, Krishna University,  Machilipatnam, Andhra Pradesh. 

2
Associate Professor, Dept. of C SE, Acharya Nagarjuna University,  Guntur, Andhra Pradesh 

3
Assistant Professor, Dept. of Comp. Science, Krishna University, Machilipatnam, Andhra Pradesh 

 

ABSTRACT 

Software reliability is assessed quantitatively by Software Reliability Growth Model (SRGM) for tracking and 

measuring the growth of reliability. Software Reliability is the probability of failure-free operation during 

precise period in precise environment. To improve reliability and quality of the selected process the execution of 

software process must be controlled and the accepted choice for monitoring software process is Statistical 

Process Control (SPC). This helps the professionals to identify anomalies while monitoring the process and take 

the necessary action. In this paper we proposed a control mechanism based on the cumulative observations of 

the time domain data using the mean value function of Burr type III distribution, which is based on Non-

Homogenous Poisson Process (NHPP). To estimate the unknown parameters of the model, maximum likelihood 

estimation method is used. The failure data is analyzed with the proposed mechanism and the results are 

exhibited through control charts. 

Keywords: Burr type III, Control Charts, NHPP, ML estimation, Software Reliability, SPC, Time 

domain data 

 

1. INTRODUCTION  

Software Reliability is an important quality characteristic of a software which can evaluate and predict the 

operational quality of software system during its development. Software Reliability is the probability of failure 

free operation of software in a specified environment for a specified period of time [1,2]. Over few decades, 

statistical models of different types have been discussed for assessment of the software reliability. Software 

reliability is assessed quantitatively by using Software Reliability Growth Model (SRGM) for tracking and 

measuring the growth of reliability and is used to compute the reliability growth of products during software 

development phase. These models can be of two types i.e. static and dynamic. The static model uses software 

metrics in order to estimate the number of defects in the software and the dynamic model uses the past failure 

discovery rate to estimate the number of failures during software execution over time.  

In software engineering one always wants to produce high quality software at low cost. As no one is perfect there 

is a possibility of errors in the software developed by humans. To improve software reliability these errors need to 

be identified while the software process is in development and a widely accepted choice for this is the Statistical 

Process Control.  



 

470 | P a g e  

 

In this paper we probe applicability of SPC to Burr type III software reliability growth model to analyze the 

reliability of a software system using Time domain data. The layout of the paper is as follows: Section 2 

describes the formulation and interpretation of the Burr type III model for the underlying NHPP. Section 3 

discusses Maximum Likelihood (ML) estimation of Burr type III model based on time domain data. Section 4 

describes SPC and its applicability.  Section 5 result is presented by monitoring the system using the control 

charts. Section 6 presents the conclusion. 

 

II. BACKGROUND AND FORMULATION OF NHPP 

Here we present the theory that underlies NHPP models, the SRGMs under consideration and maximum 

likelihood estimation for ungrouped data. Let „t‟ be a continuous random variable in pdf: f(t ;θ1, θ2,….. θk) 

where, θ1, θ2,….. θk are k unknown constant parameters that need to be estimated, and cdf: F(t) where the 

mathematical relationship between the pdf and cdf is given by: f(t) = F '(t). If „a‟ denotes the expected number 

of faults that can be detected given infinite testing time then, the mean value function of the NHPP models can 

be written as: m(t) = aF(t), where F(t) is a cumulative distribution function then the failure intensity function λ(t) 

in case of NHPP models is given as: λ (t) = aF '(t) [3]. 

2.1 NHPP for Model construction 

The Non-Homogenous Poisson Process (NHPP) based software reliability growth models (SRGMs) are proved 

to be quite successful in practical software reliability engineering [2]. The main issue in the NHPP model is to 

determine an appropriate mean value function to order to denote the expected number of failures experienced up 

to a certain point in time. Model parameters can be estimated by using Maximum Likelihood Estimate (MLE). 

Many NHPP SRGMs have been built upon various assumptions. Some of the SRGMs assume that each time a 

failure occurs, the fault that caused it can be immediately removed and no new faults are introduced. This is 

usually called perfect debugging.  

2.2 Burr Type III the considered model 

Burr [4] introduced twelve different forms of cumulative distribution functions for modeling data. The probability 

density function of a three-parameter Burr type III distribution has the form: f (t,b,c) =
1+bc

1 -bc

]t+[1

bct where b,c are 

shape parameters. The corresponding cumulative distribution function is: F (t) = [1+t
-c
]

-b
. The mean value 

function m (t) = a [1+t
-c
]

-b
. The failure intensity function is given as: λ (t) = 













  11 )1( bcc tt

abc  

 

III. MAXIMUM LIKELIHOOD ESTIMATION FOR PARAMETER ESTIMATION 

The preferred method for obtaining parameter estimates is to use the maximum likelihood equations. These 

equations are taken from the model equations and the assumptions which underlay them. The parameters are 

taken to be those values which maximize the likelihood functions. These values are identified by taking the 

partial derivate of the likelihood function with respect to the model parameters, the maximum likelihood 

equations, and setting them to zero. Later iterative routines are used to solve these equations.  



 

471 | P a g e  

 

Log Likelihood function for ungrouped data [3] is given as, 

:   )()(log
1

n

n

i

i tmtLLF 


    (1) 

The maximum likelihood estimators of θ1, θ2,….. θn obtained by maximizing L or ˄ , where ˄  is in L . By 

maximizing ˄ , which is much easier to work with than L, the maximum likelihood estimators (MLE) of θ1, 

θ2,….. θn are the simultaneous solutions of n equations such 

as:  
0







, i=1,2,…,n. 

3.1 Parameter Estimation using MLE 

Cumulative time between failures data for software reliability monitoring is used. Using the estimators of „a‟, 

„b‟ and „c‟ we computed m (t) [5]. 

 

The Log Likelihood function is given as: 

:

 


















n

i
bc

n

bc

i

c

i t

a

tt

abc
LogL

1
11

1)1(
log  (2) 

 

Taking the Partial derivative with respect to „a‟ and equating     to „0‟. 

:  bc

ntna  1
    ` (3)

 

 

Taking the Partial derivative of log L with respect to „b‟ and equating to„0‟. 

:

   


 


n

i

c

n

c

i tnt

n
b

1

1log1log

   (4) 

 

The parameter „c‟ is estimated by iterative Newton-Raphson Method using 
 
 i

i
ii

cg

cg
cc

'
1  where g(c) and 

g‟(c) is expressed as follows.  

:  
 

0
1

2
1log

1

log

1
















 


c

i

n

i

ic

n

n

t
t

c

n

t

tn
cg

  (5)   

 

:

 
 

 
 

 

 





n

i
c

i

i

c

i

c

n

c

nn

t

tt

c

n

t

ttn
cg

1
2

2

2

2

1

log2

1

log
'

  (6) 

            



 

472 | P a g e  

 

IV. APPLICABILITY OF SPC TO SOFTWARE RELIABILITY 

Software reliability growth models (SRGM‟s) are useful to assess the reliability for quality management and 

testing progress control of software development. To improve reliability and quality the execution of software 

process must be controlled and the choice for monitoring software process is Statistical Process Control.  

The parameters estimated can be used to monitor the process through SPC concepts and methods over time, in 

order to verify that the process remains in the state of statistical control.  SPC may help in finding assignable 

causes, long term improvements in the software process. Software quality and reliability can be achieved by 

eliminating the causes or improving the software process or its operating procedures [6]. 

4.1 Control Charts of SPC 

The most popular technique of SPC for maintaining process control is control charting. The control chart is one 

of the seven tools for quality control. SPC is used to secure, that the quality of the final product will conform to 

predefined standards. In any process, regardless of how carefully it is maintained, a certain amount of natural 

variability will always exist. A process is said to be statistically “in-control” when it operates with only chance 

causes of variation. On the other hand, when assignable causes are present, then we say that the process is 

statistically “out-of-control”. Control charts are capable to create an alarm when a shift in the level of one or 

more parameters of a distribution occurs. Normally, such a situation will be reflected in the control chart by 

points plotted outside the control limits or by the presence of specific patterns. The most common non-random 

patterns are cycles, trends, mixtures and stratification [7]. For a process to be in control the control chart should 

not have any trend or nonrandom pattern. The selection of proper SPC charts is essential to effective statistical 

process control implementation and use. The SPC chart selection is based on data, situation and need [8]. Chan 

et al.,[9] proposed a procedure based on the monitoring of cumulative quantity. This approach has been shown 

to have a number of advantages: it does not involve the choice of a sample size; it raises fewer false alarms; it 

can be used in any environment; and it can detect further process improvement. Xie et al.,[10] proposed t-chart 

for reliability monitoring where the control limits are defined in such a manner that the process is considered to 

be out of control when one failure is less than LCL or greater than UCL. The traditional false alarm probability 

is to set to be 0.27% although any other false alarm probability can be used. The actual acceptable false alarm 

probability should in fact depend on the actual product or process [11]. 

: Tu = a(1+t
-c

)
-b 

= 0.99865 

: Tc = a(1+t
-c

)
-b 

= 0.05 

: Tl  = a(1+t
-c

)
-b 

= 0.00135 

These limits when converted to m(tU), m(tC) and m(tL) form will be used to find whether the software process is 

in control or not by placing the points in Mean value chart. A point below the control limit m(tL) indicates an 

alarming signal. A point above the control limit m(tU) indicates better quality. If the points are falling within the 

control limits, it indicates the software process is in stable condition [12]. 

 

V. DATA ANALYSIS FOR NTDS DATA SET 

In this section, we present the analysis of software failure data set, The set of software errors analyzed here is 

borrowed from software development project as published in Pham (2005) [3]. The data set consists of 26 

failures in 250 days. During the production phase 26 software errors are found and during the test phase five 



 

473 | P a g e  

 

additional errors are found. During the user phase one error is observed and two more errors are noticed in a 

subsequent test phase indicating that a network of the module has taken place after the user error is found. In 

this paper, a numerical conversion of data (Failure Time (hours)*0.01) is done in order to facilitate the 

parameter estimation [13] [14] [15].The data named as NTDS data are summarized in the below table. 

Solving equations in Section 3.1 by Newton-Raphson Method (N-R) method for the NTDS software 

failure data, the iterative solutions for MLEs of a, b and c are as below. 

Table-1: NTDS Data Set 

Failure  

Number  n  

Time between 

 Failures Sk days 

Cumulative Time 

Xn = 𝑆𝑘 days 

Failure Time(hours)*0.01  

  

Production (Checkout) Phase   

1 9 9 0.09 

2 12 21 0.21 

3 11 32 0.32 

4 4 36 0.36 

5 7 43 0.43 

6 2 45 0.45 

7 5 50 0.5 

8 8 58 0.58 

9 5 63 0.63 

10 7 70 0.7 

11 1 71 0.71 

12 6 77 0.77 

13 1 78 0.78 

14 9 87 0.87 

15 4 91 0.91 

16 1 92 0.92 

17 3 95 0.95 

18 3 98 0.98 

19 6 104 1.04 

20 1 105 1.05 

21 11 116 1.16 

22 33 149 1.49 

23 7 156 1.56 

24 91 247 2.47 

25 2 249 2.49 

26 1 250 2.5 

Test Phase   

27 87 337 3.37 

28 47 384 3.84 

29 12 396 3.96 



 

474 | P a g e  

 

30 9 405 4.05 

31 135 540 5.4 

User Phase   

32 258 798 7.98 

Test Phase   

33 16 814 8.14 

34 35 849 8.49 

 

Solving equations in Section 3 by Newton-Raphson Method (N-R) method for the NTDS software failure data, 

the iterative solutions for MLEs of a, b and c are as below. 

34.465706


a  

1.763647 


b  

1.810222 


c  

Using „a‟ and „b‟ and „c‟ values we can compute m(t). Now the control limits are calculated by the following 

equations taking the standard values 0.00135, 0.99865 and 0.5. 

 

 

  0.00135
bc

t1
l

T

0.5
bc

t1cT

0.99865
bc

t1uT
















 

Table-2: NTDS Mean Successive Difference of BURR TYPE III 

Error Number n 

Cumulative Failures 

xn =∑Skdays 

Failure 

Time(hours)*0.01  m(t) Sd 

1 9 0.09 0.015452 0.198041 

2 21 0.21 0.213493 0.520811 

3 32 0.32 0.734304 0.286462 

4 36 0.36 1.020766 0.626513 

5 43 0.43 1.647279 0.206999 

6 45 0.45 1.854278 0.56768 

7 50 0.5 2.421958 1.039715 

8 58 0.58 3.461673 0.717151 

9 63 0.63 4.178824 1.068871 

10 70 0.7 5.247695 0.157531 

11 71 0.71 5.405226 0.963417 

12 77 0.77 6.368643 0.162969 



 

475 | P a g e  

 

13 78 0.78 6.531613 1.482633 

14 87 0.87 8.014246 0.661508 

15 91 0.91 8.675753 0.165053 

16 92 0.92 8.840807 0.493704 

17 95 0.95 9.334511 0.490717 

18 98 0.98 9.825228 0.968817 

19 104 1.04 10.79404 0.159489 

20 105 1.05 10.95353 1.707815 

21 116 1.16 12.66135 4.481716 

22 149 1.49 17.14306 0.817749 

23 156 1.56 17.96081 7.227388 

24 247 2.47 25.1882 0.105217 

25 249 2.49 25.29342 0.051976 

26 250 2.5 25.34539      ----- 

 

These limits are converted to the form m(tU), m(tC) and m(tL) 

They are used to find whether the software process is in control or not by placing the points in Failure Control 

chart shown in figure 1.  

 

 

 Fig. 1.  Failure Control Charts 

A point below the control limit m(tL) indicates an alarming signal. A point above the control limit m(tU) indicates 

better quality. If the points are within the control limits, it indicates the software process is in stable condition. 

The mean value control chart shows all the successive differences and their values are as follows 

 



 

476 | P a g e  

 

23285.17)(

46529.0)(

41917.34)(







c

l

u

tm

tm

tm

 

 

Placing the time between failures cumulative data  m(t) successive differences shown in Table 2 on y axis and 

failure number on x axis and the values of control limits on Failure Control chart we obtain Fig.1.  The Failure 

control chart shows that the 25th failure data has fallen below m(tL) which indicates the failure process is 

identified. It is significantly early detection of failures using Failure Control Chart. The software quality is 

determined by detecting failures at an early stage. 

 

VI. CONCLUSION 

Software reliability is an important quality measure that quantifies the operational profile of computer systems. In 

this paper we proposed Burr type III software reliability growth model. This model is primarily useful in 

estimating and monitoring software reliability, viewed as a measure of software quality. Equations to obtain the 

maximum likelihood estimates of the parameters based on time domain data are developed. The analysis of 

NTDS data shows out of control signals i.e, below the LCL .We conclude that our method of estimation and 

control charts are giving +ve recommendations for their use in finding out preferable software. By observing the 

Failure control chart we have identified that the failure situation is detected at 25
th

 point of Table-2. Hence our 

proposed Failure Chart detects out of control situation. This is a simple method for model validation and is very 

convenient for practitioners of software reliability. The early detection of software failure will improve the 

software reliability. 

 

REFERENCES 

[1] J. D. MUSA. Software Reliability Engineering.Wiley.1998. 

[2] J. D. MUSA, A. IANNINO, AND K. OKUMOTO. Software Reliability Measurement Prediction 

Application. McGraw-Hill, 1987. ISBN 0-07-044093-X. 

[3] Pham. H., 2006. “System software reliability”, Springer. 

[4] Burr (1942), "Cumulative Frequency Functions", Annals of Mathematical Statistics, 13, pp. 215-232. 

[5]  Ch.Smitha Chowdary, Dr.R.Satya Prasad, K.Sobhana (2015),” Burr Type III Software Reliability Growth 

Model”, IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, 

Volume 17, Issue 1, Ver. I (Jan – Feb. 2015),PP 49-54. 

[6] Kimura, M., Yamada, S., Osaki, S., (1995). “Statistical Software reliability prediction and itsapplicability 

based on mean time betweenfailures”. Mathematical and Computer Modelling Volume 22, Issues 10-12, 

Pages 149-155. 

[7] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007. “Statistical process control using shewart control 

charts with supplementary Runs rules” Springer Science + Business media 9:207-224. 

[8] MacGregor, J.F., Kourti, T., 1995. “Statistical process control of multivariate processes”. Control 

Engineering Practice Volume 3, Issue 3, March 1995, Pages 403-414. 



 

477 | P a g e  

 

[9] Chan, L.Y, Xie, M., and Goh. T.N., (2000), “Cumulative quality control charts for monitoring production 

processes. Int J Prod Res; 38(2):397-408. 

[10]  Xie. M, T.N Goh and P.Ranjan. (2002). “Some effective control chart procedures for reliability 

monitoring”, Reliability Engineering and System Safety. 77, 143-150. 

[11]  Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-Logistic Software Reliability Growth Model”. The 

3rd IEEE International Symposium on High-Assurance Systems. 

[12]  MacGregor, J.F., Kourti, T., 1995. “Statistical process control of multivariate processes”. Control 

Engineering Practice Volume 3, Issue 3, March 1995, Pages 403-414. 

[13]  N. R. Barraza., “Parameter Estimation for the Compound Poisson Software Reliability Model”, 

International Journal of Software Engineering and Its Applications, 

http://www.sersc.org/journals/IJSEIA/vol7_no1_2013/11.pdf, vol. 7, no. 1, (2013) January, pp. 137-148.  

[14]  I. Inayat, M. Asim Noor and Z. Inayat, “Parameter Successful Product-based Agile Software Development 

without Onsite Customer: An Industrial Case Study”, International Journal of Software Engineering and Its 

Applications,http://www.sersc.org/journals/IJSEIA/vol6_no2_2012/1.pdf, vol. 6, no. 2, (2012) April, pp. 1-

14. 

[15]  Hassan Najadat and Izzat Alsmadi., “Enhance Rule Based Detection for Software Fault Prone Modules”, 

International Journal of Software Engineering and Its Applications, Vol. 6, No.1, pp. 75-86, January (2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     


