DATA MINING DATA WAREHOUSING: ANALYSIS OF APPLICATIONS MEASURES OF MULTI DIMENSIONAL MOVING DATA OBJECTS THROUGH TRAJECTORY DATA WARE HOUSE Halgare Nanasaheb Mahadev¹, Dr. Ali Akbar Bagwan²

^{1,2}Research Scholar, Kalinga University, Chhattisgarh, (India)

ABSTRACT

The key goals associated with this research includes to evaluate the assorted perspective of trajectory data warehouse and its related aspects, to perform the implementation based on noveland effective approach on trajectory data warehouse so that the effectual response can be achieved, to implement a novel or integrate the metaheuristic based approach so that the soft computing based optimized results can be achieved and to associate the applications of soft computing and related aspects so that the better results can be achieved. The main objective of this research is to explain the concept of data mining and data warehousing and its application measures of multi dimensional moving data object through trajectory data warehouse, to identify the issues related to the data warehouse, and to suggest ways of resolving them. The main objective of study includes to study the relationship between data mining and data warehousing, to study the design of schema for trajectory data warehouses conceptual modeling, to study

different measures of trajectory data warehouse and to study SQL for determination of computed measures. The motivation behind this work done is the realization that with increasing in the advance technologies like location aware devices, traffic control, location based services, fleeting management-commerce these system requires trajectory data warehouse of gliding object. Today's applications have trajectory data warehouses of gliding objects but it has limited measures, None of the present day stand-alone application measures that predict average motion major direction of gliding objects which will help to location aware devices for decision making.

Keywords: Data Mining Data Warehousing, Applications Measures of Multi Dimensional Moving Data Objects, Trajectory Data Ware House

I. TRAJECTORY DATA WAREHOUSE AND CUTTING EDGE TECHNOLOGIES

Cutting edge area mindful gadgets and applications convey colossal amounts of spatiotemporal data concerning moving items, which must be either rapidly techniques for continuous applications, similar to activity control administration, or deliberately dug for complex, information finding undertakings. Regardless of the possibility that such reality and figures generally begin as planned, found perceptions of all around distinguished articles,

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

they should regularly be put away in total structure, without recognizable proof of the comparing moving items, either for security reasons, or just for the sheer measure of data which ought to be kept online to perform explanatory operations. Such a total is typically an unpredictable errand, and inclined to the presentation of mistakes which are enhanced by resulting total operations. Consequently, we propose a way to deal with the issue which depends on traditional Data Warehouse (DW) ideas, so we can receive a settled and concentrated on data model, and inaddition the proficient devices and frameworks effectively created for such a model. Our DW is gone for characterizing, as essential components of interest, not the perceptions of the moving articles, yet rather their directions, so we can think about properties, for example, normal velocity, voyaged separation, most extreme increasing speed, and nearness of unmistakable directions. We accept the granularity of the reality table given by a consistent three-dimensional framework on the spatial and fleeting measurements, where the truths are the arrangement of directions which cross every cell of the lattice, and the measures are properties identified with that set. One of the principle issues to face is the productive populace of the Trajectory DW (TDW) from surges of direction perceptions, touching base in an unusual and unbounded route, with various rates. The test is to misuse a constrained measure of support memory to store a couple of approaching past perceptions, with a specific end goal to accurately remake the different directions, and register the required measures for the base cells, lessening however much as could reasonably be expected the approximations. The model of our TDW and the relating stacking issues has been presented. In this study we talk about in point of interest the stacking and calculation of an intricate total measure, the nearness, which can be characterized as the quantity of unmistakable directions lying in a cell. Such a measure postures non paltry computational issues. On one hand, in the stacking stage, just a limited measure of memory can be utilized for breaking down the information streams. This suffices for direction remaking, however at times we may in any case tally an article, with numerous perceptions in the same cell, more than once. Henceforth the measure nearness registered for base cells is as a rule an estimate of the careful quality. A second estimate is presented in the move up stage. Truth be told, following the move up capacity for the measure nearness is, as unmistakable tally, an all encompassing capacity; it can't be figured utilizing a limited number of helper measures beginning from sub-totals. Our proposition depends on a surmised, albeit extremely precise, nearness total capacity, which mathematically consolidates a limited measure of other sub-total measures, put away in the base cells of the network. The study gave an intensive examination of the aforementioned strategy, centering, specifically, on the mistakes presented by the approximations. From our tests, our strategy ended up producing a blunder which is sensibly littler than the one of an as of late proposed calculation [Tao et al. 2004], in view of representations, which are a surely understood probabilistic including technique data bases applications. We additionally understood a model of our TDW, so as to examine its plausibility when utilizing item warehousing apparatuses, similar to the Oracle one. The principal test is the ETL strategy of DW: by abusing a couple of recollections, we need to change a flood of direction perceptionson-the-fly and total them to upgrade the base cells of our spatio-transient 3D shape. Utilizing aJava application, playing out the data change, and a particular stacking technique accessible in theOracle suite, we ready to expand and stack around 7000 perceptions for every second. The othertest is the productive calculation of our rough total capacity, used to move up the nearness measure.By studying all literature mentioned above I inspired to find out one of the measure called asmajor direction this measure average motion angle of different objects in a spatial area.

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

II. TRAJECTORY SEGMENT

It is line segment represented as a pair of triplets((xs, ys, ts), (xE, yE, tE))

Where ((xS, yS, tS), (xE, yE, tE)) represent the start and end positions for the segment at times tS, tE respectively.

III. TRAJECTORY OF MOVING OBJECT

It is defined as a finite sequence of trajectory segments (s1, s2, s3.... sn) such that

1. A moving object trajectory is continuous.

2. For every pair of consecutive segments si, si+1 the end points of si is the start point si+1 Trajectory of moving object can be represented by a finite set of observations, that is. a finite subset of points taken from the actual continuous trajectory. This finite set is called a sampling.

In The above Figure a trajectory of a moving object in a two dimensional space. Each point of the trajectory is given by a tuple (id, x, y, t) corresponding to an object id in a position (x, y) at time t. There may be situations where we have to reconstruct the trajectory of the moving object from its sampling, e. g., when one is interested in computing the continuous increase in number of trajectories in a given area. To solve this problem there is use of linear local interpolation for this assume the movement of the objects between the observed points having constant speed, in a straight way. A Trajectory Data Warehouse (TDW) is to capable to store a stream of samplings, process the data volume, compute and store the measures in order to provide an environment to analyze the information about the objects.

Figure 2.4. Linear interpolation

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 08, August 2017 www.ijarse.com IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

¢

Figure 2.5. Interpolated Trajectory with spatial and temporal points

	•
bbject Id Time	estamp Type Lat Lng
0 0 nownoint 1	0 255046 77 20220
o o newpoint 1	
1 0 newpoint 1	18.35313 /0.045800
2 0 newpoint 1	8.161188 76.017025
3 0 newpoint 1	8 124529 77 183317
4 0 newpoint 1	0.124525 77.105517
4 0 newpoint 1	0.342242 //.2040/0
5 0 newpoint 1	8.140906 //.252816
6 0 newpoint 1	7,996596 76,882355
7 0 newpoint 1	7 958391 77 053568
2 0 newpoint 1	0 100067 77 101060
8 0 newpoint 1	0.13390/ //.181308
9 0 newpoint 1	8.159583 77.250413
10 0 newpoint	18.6611 77.264
11 0 newpoint	18 307469 77 254906
12 0 newpoint	10 041403 77 151530
12 0 newpoint	10.041405 //.131320
13 0 newpoint	18.417941 76.541608
14 0 newpoint	17.972195 77.082547
15 0 newpoint	18 438634 77 267645
16 0 newpoint	10.135.77 334315
10 0 newpoint	10.5155 //.224515
1/ 0 newpoint	17.982534 77.20939
18 0 newpoint	18.654593 76.240977
19 0 newpoint	18 636313 76 36676
20 0 nowpoint	19 145 76 2995
20 0 newpoint	18.145 /0.3885
21 0 newpoint	18.1/4959 //.142/16
22 0 newpoint	18.013993 77.019201
23 0 newpoint	18 115671 76 981009
24 0 nownoint	18 4042 77 1021
24 0 newpoint	10.4042 //.1051
25 0 newpoint	18.211/21 /5.988654
26 0 newpoint	18.112431 77.187118
27 0 newpoint	18.073882 77.287017
28 0 newpoint	18 232452 77 180921
20 0 newpoint	10.176205 77 205720
29 0 newpoint	10.1/0595 //.205/20
30 0 newpoint	18.040842 //.15/634
31 0 newpoint	18.303228 75.929119
32 0 newpoint	18.182426 76.736672
22 0 newpoint	17 057458 77 201462
33 0 newporne	10 000604 77 04561
34 0 newpoint	18.000684 //.04561
35 0 newpoint	18.334759 76.640372
36 0 newpoint	18,236489 77,069184
37 0 newpoint	18 000684 77 04561
28 0 nowpoint	19 252255 76 02049
38 0 newpoint	18.233233 70.03048
39 0 newpoint	17.972195 77.082547
40 0 newpoint	18.667471 76.368565
41 0 newpoint	18.318831 76.571678
42 0 newpoint	17 082045 77 042911
42 0 newpoint	10.1100004 77.042011
43 0 newpoint	18.118924 /0.3/3889
44 0 newpoint	18.002025 77.047195
45 0 newpoint	18.572937 76.027364
46 0 newpoint	18 670052 76 481077
47 O newportite	10 643635 76 160643
47 0 newpoint	10.043035 /0.109612
48 0 newpoint	18.377119 77.250728
49 0 newpoint	18.017615 77.061831
50 0 newpoint	18 180315 76 022144
55 0 nemporne	10.100010 /0.022144

Figure 4. Dataset of 2000 objects

Figure 5. Reconstructed trajectories.

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 08, August 2017

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Algorithm Cell-Oriented-ETL(D MODTrajectoryTable) // For each pair <Region, Interval> forming a s-t cell Cj FOR EACH cell Cj DO // Find the set of sub-trajectories inside the cell S = intersects(D, Cj); // decompose S to subsets according to object profile FOR EACH subset S' of S DO // Compute the various measures Compute_Measures(S'); END-FOR END-FOR

IV. CONCLUSION

The main objective of this research is to explain the concept of data mining and data warehousing and its application measures of multi dimensional moving data object through trajectory data warehouse, to identify the issues related to the data warehouse, and to suggest ways of resolving them. The main objective of study includes to study the relationship between data mining and data warehousing, to study the design of schema for trajectory data warehouses conceptual modeling, to study different measures of trajectory data warehouse and to study SQL for determination of computed measures. The motivation behind this work done is the realization that with increasing in the advance technologies like location aware devices, traffic control, location based services, fleeting management-commerce these system requires trajectory data warehouse of gliding object. Today's applications have trajectory data warehouses of gliding objects but it has limited measures, None of the present day stand-alone application measures that predict average motion major direction of gliding objects which will help to location aware devices for decision making.

REFERENCES

- A.A. Vaisman and E. Zim_anyi. "What Is Spatio-Temporal Data Warehousing? In Proc. of DaWaK, volume 5691 of LNCS, pages 9{23. Springer, 2009.
- [2] Arfaoui, N., and Akaichi, J. Modeling Herd Trajectory Data Warehouse. International Journal of Engineering Trends and Expertise (2011)
- [3] B.de Ville, (2001), Microsoft Data Mining: Integrated Business Intelligence for e- Commerce and Knowledge Management, Boston: Digital press.
- [4] Berry, M. J. A., and G. S. Linoff, Mastering Data Mining. New York: Wiley (2000).
 [5] Bogorny, V., Kuijpers, B. & Alvares, L. O. (2007), 'Reducing uninteresting spatial association rules in geographic data

International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

bases using background knowledge: a summary of results', International Journal of Geographical Information Science.

- [6] Braz, F.: Trajectory Data Warehouses: Proposal of Intend and Application to Exploit Data. 9th GeoInfo, Campos do Jordão, Brazil, 61-72 (2007)
- [7] C.C.Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In Proceedings of the ACM SIGMOD CONFERENCE on Management of Data, pages 70–81, Dallas, Texas, 2000.
- [8] C.Giannella, J. Han, J. Peri, X. Yan, and P. Yu. Mining frequent patterns in data streams at multiple time granularities. In NSF Workshop on Next Generation Data Mining, 2003.
- [9] C.Silvestri and S. Orlando. Approximate Mining of Frequent Patterns on Streams. Int. Journal of Intelligent Data Analysis, 11(1):49–73, 2007.
- [10] Cabibbo, L., & Torlone, R. (2008). A Logical Approach to Multidimensional Data bases. In H. Schek, F. Saltor, I. Ramos, G. Alonso (Eds.), Proceedings of 6th International Conference on Extending Data basesExpertise; Vol. 1377, Lecture Notes of Computer Science (pp, 183-197). Valencia, Spain: Springer.

[11] Carmè, A., Mazón, J. N., & Rizzi, S. (2010). A Model-Driven Heuristic Approach for

Detecting Multidimensional Facts in Relational Data Sources. Proceedings of 12th International Conference on Data Warehousing and Knowledge Discovery; Vol. 6263, Lecture Notes of Computer Science (pp, 13-24). Bilbao, Spain: Springer.