

297 | P a g e

DUPLICATE DETECTION USING PROGRESSIVE

ARRANGED NEIGHBORHOOD METHOD AND

PROGRESSIVE BLOCKING

Dr. Ratna Raju Mukiri

Associate Professor, St. Ann’s College of Engineering & Technology, Chirala

ABSTRACT

Duplicate detection is the process of classifying numerous representations of same real world entities.

Presently, these methods made essential to route ever higher datasets in constantly squatter period and

sustaining the eminence of a dataset befits progressively problematic. Progressive duplicate detection

algorithms significantly intensify the efficiency of discovering replicas if the execution time is inadequate.

Exploiting the expansion of the overall process within the time available by reporting results in much prior than

previous methodologies. Here, widespread tests display that progressive algorithms can double the efficiency

over time of traditional duplicate detection and ominously progress upon connected work.

Keywords: Duplicate detection, entity resolution, pay-as-you-go, progressiveness, data cleaning.

I. INTRODUCTION

Data are among the utmost significant possessions of a company. But because of data changes and sloppy data

entry, errors such as duplicate entries might occur, making data cleansing and in particular duplicate detection

indispensable[1]. However, the pure size of today’s datasets solidify duplicate detection processes luxurious.

Online retailers, for example, offer huge catalogs comprising a constantly growing set of items from many

different suppliers.

As independent persons change the product portfolio, duplicates arise. While there is an obvious need for

deduplication, online shops without downtime cannot give traditional deduplication[1],[2],[7]. Progressive

duplicate detection identifies most duplicate pairs early in the detection process. Instead of plummeting the

overall time needed to finish the entire process, progressive approaches try to reduce the average time after

which a duplicate is found. We propose two novel, progressive duplicate detection algorithms namely

progressive arranged neighborhood method (PSNM), which achieves best on small and almost clean datasets,

and progressive blocking (PB), which performs best on large and very dirty datasets. Both augment the efficacy

of duplicate detection even on very large datasets[5].

The contributions made in improving efficiency on progressive duplicate detection are two dynamic progressive

duplicate detection algorithms, PSNM and PB, which expose different[6] strengths and outperform current

approaches, a concurrent progressive approach for the multi-pass method and adapt an incremental transitive

closure algorithm that together form the first complete progressive duplicate detection workflow, a novel quality

measure for progressive duplicate detection to objectively rank the performance of different approaches.

The duplicate detection workflow includes the three steps pair-selection, pair-wise comparison, and clustering.

For a progressive workflow, only the first and last steps need to be adapted. Therefore, we do not scrutinize the

298 | P a g e

appraisal step and propose algorithms that are independent of the quality of the similarity function. Approaches

build upon the most commonly used methods[8] sorting and traditional blocking, and therefore make the same

assumptions: duplicates are expected to be arranged close to one another or grouped in same buckets,

respectively.

II. RELATED WORK

Much research on duplicate detection [2], [3], also known as entity resolution and by many other names, focuses

on pair selection algorithms that try to maximize recall on the one hand and efficiency on the other hand. The

most prominent algorithms in this area are Blocking [4] and the arranged neighborhood method (SNM) [5].

2.1 Adaptive Techniques

Previous publications on duplicate detection often focus on reducing the overall runtime. Thereby, some of the

proposed algorithms are already capable of estimating the quality of comparison candidates [6],[7], [8]. The

algorithms use this information to choose the comparison candidates more carefully.

For the same reason, other approaches utilize adaptive windowing techniques, which dynamically adjust the

window size depending on the amount of recently found duplicates [9], [10]. These adaptive techniques

dynamically improve the efficiency of duplicate detection, but in contrast to our progressive techniques, they

need to run for certain periods of time and cannot maximize the efficiency for any given time slot. Progressive

techniques.

In the last few years, the economic need for progressive algorithms also initiated some concrete studies in this

domain. For instance, pay-as- you-go algorithms for information integration on large scale datasets have been

presented [11]. Other works introduced progressive data cleansing algorithms for the analysis of sensor data

streams [12]. However, these approaches cannot be applied to duplicate detection. Xiao et al. proposed a top-k

similarity join that uses a special index structure to estimate promising comparison candidates [13].

This approach progressively resolves duplicates and also eases the parameterization problem. Although the

result of this approach is similar to our approaches (a list of duplicates almost ordered by similarity), the focus

differs: Xiao et al. find the top-k most similar duplicates regardless of how long this takes by weakening the

similarity threshold; we find as many duplicates as possible in a given time. That these duplicates are also the

most similar ones is a side effect of our approaches. pay-as-you-go entity resolution by Whang et al. introduced

three kinds of progressive duplicate detection techniques, called “hints” [1].

A hint defines a probably good execution order for the comparisons in order to match promising record pairs

earlier than less promising record pairs. However, all presented hints produce static orders for the comparisons

and miss the opportunity to dynamically adjust the comparison order at runtime based on intermediate results.

Some of our techniques directly address this issue. Furthermore, the presented duplicate detection approaches

calculate a hint only for a specific partition, which is a (possibly large) subset of records that fits into main

memory. By completing one partition of a large dataset after another, the overall duplicate detection process is

no longer progressive. This issue is only partly addressed in [1], which proposes to calculate the hints using all

partitions.

The algorithms presented in our paper use a global ranking for the comparisons and consider the limited amount

of available main memory. The third issue of the algorithms introduced by Whang et al. relates to the proposed

299 | P a g e

pre-partitioning strategy: By using mini hash signatures [14] for the partitioning, the partitions do not overlap.

However, such an overlap improves the pair-selection [15], and thus our algorithms consider overlapping blocks

as well. In contrast to [1], we also progressively solve the multi- pass method and transitive closure calculation,

which are essential for a completely progressive workflow. Finally, we provide a more extensive evaluation on

considerably larger datasets and employ a novel quality measure to quantify the performance of our progressive

algorithms.

2.2. Additive Techniques

By combining the arranged neighborhood method with blocking techniques, pair-selection

algorithms can be built that choose the comparison candidates much more precisely. The

Arranged Blocks algorithm [15], for instance, applies blocking techniques on a set of input

records and then slides a small window between the different blocks to select additional

comparison candidates. Our progressive PB algorithm also utilizes sorting and blocking

techniques; but instead of sliding a window between blocks, PB uses a progressive block-

combination technique, with which it dynamically chooses promising comparison candidates

by their likelihood of matching.

The recall of blocking and windowing techniques can further be improved by using multi-

pass variants [5]. These techniques use different blocking or sorting keys in multiple,

successive executions of the pair-selection algorithm. Accordingly, we present progressive

multi-pass approaches that interleave the passes of different keys.

III. SYSTEM DESIGN

A. Progressive SNM

The progressive arranged neighborhood method is centered on the traditional organized neighborhood method

[5]. PSNM sorts the input data using a predefined sorting key and only compares records that are within a

window of records in the arranged order. The disposition is the records that are close in the arranged order are

more likely to be duplicates than records that are far apart, because they are already similar with respect to their

sorting key. More precisely, the distance of two records in their sort ranks (rank-distance) gives PSNM an

assessment of their matching likelihood.

The PSNM algorithm uses this insight to iteratively vary the window size, opening with a small window of size

two that hastily finds the most encouraging records. This stagnant methodology has already been proposed as

the arranged list of record pairs (SLRPs) hint [1]. The PSNM algorithm varies by animatedly altering the

execution order of the comparisons[9] based on intermediate results (Look-Ahead). Likewise, PSNM integrates

a progressive sorting phase (MagpieSort) and can gradually process vividly loftier datasets.

B. PSNM Algorithm

The algorithm portrayed the execution of PSNM, takes five input parameters: D is a reference to the data, which

has not been loaded from disk yet. The sorting key K defines the attribute or attribute combination that should

be used in the sorting step. W stipulates the maximum window size, which corresponds to the window size of

300 | P a g e

the traditional organized neighborhood method. When using early conclusion, this parameter can be set to an

hopefully high default value. Parameter I defines the enlargement interval for the progressive iterations. The last

parameter N specifies the number of records in the dataset. This number can be gleaned in the sorting step, but

we list it as a parameter for presentation purposes.[10].

C. Progressive Blocking

In contrast to windowing algorithms, blocking algorithms assign each record to a fixed group of similar records

(the blocks) and then compare all pairs of records within these groups. Progressive blocking is a novel approach

that builds upon an equidistant blocking technique and the successive enlargement of blocks.

Like PSNM, it also pre sorts the records to use their rank-distance in this sorting for connection estimation.

Based on the sorting, PB first[11] creates and then progressively extends a fine-grained blocking[10]. These

block extensions are specifically executed on neighborhoods around already identified duplicates, which enables

PB to expose clusters earlier than PSNM.

D. PB in a block comparison matrix.

After the pre-processing, the PB algorithm starts gradually spreading the most promising block pairs. In each

loop, PB first takes those block pairs best BPs from the bPairs-list that reported the highest duplicate density.

301 | P a g e

Thereby, at most b Per P=4 block pairs can be taken, because the algorithm needs to load two blocks per best BP

and each extension of a best BP delivers two partition block pairs.

Nevertheless, if such an extension exceeds[9] the maximum block range R, the last best BP is discarded. Having

successfully defined the most promising block pairs, For all partition block[8],[1], pairs, the procedure compares

each record of the first block to all records of the second block.

The recognized duplicate pairs are then emitted. Additionally, Assigns the duplicate pairs to the current to later

rank the duplicate density of this block pair with the density in other block pairs[12]. Thereby, the amount of

duplicates is regularized by the number of comparisons, since the last block is frequently smaller than all other

blocks. If the PB algorithm is not terminated prematurely, it automatically finishes when the list of bPairs is

empty, e.g., no new block pairs within the maximum block range R can be found.

IV. IMPLEMENTATION

A. Blocking Techniques

Block size: A block pair entailing of two small blocks outlines only few assessments. Using such small blocks,

the PB algorithm cautiously chooses the most promising comparisons and avoids many less promising

comparisons from a wider neighborhood. However, block pairs based on small blocks cannot characterize the

duplicate density in their neighborhood well, because they represent a too small sample. A block pair consisting

of large blocks, in contrast, may define too many, less promising comparisons, but produce better samples for

the extension step.

The block size parameter S, therefore, trades off the execution of non-promising comparisons and the[12]

extension quality. In primary experimentations, it is identified that five records per block to be a usually good

302 | P a g e

and not sensitive value. Maximum block range: The maximum block range parameter R is redundant when

using early termination. For our estimation, nevertheless, we use this constraint to check the PB algorithm to

practically the same comparisons executed by the traditional arranged neighborhood method. We cannot restrict

PB to execute exactly the same comparisons, because the selection of comparison candidates is more fine-

grained by using a window than by using blocks. Nevertheless, the calculation of b windowSize S c causes PB

to execute only marginally fewer comparisons.[13] Extension strategy: The extend(bestBP) function returns

some block pairs in the neighborhood of the given bestBP.

In implementation, the function extends a block pair from more eager extension strategies that select more block

pairs from the neighborhood increase the progressiveness, if many large duplicate clusters are expected. By

using a block size S close to the average duplicate cluster size, more eager extension strategies have, however,

not shown a significant impact on PB’s performance in our experiments. The benefit of detecting some cluster

duplicates earlier was usually as high as the drawback of executing fruitless comparisons.[14] MagpieSort: To

estimate the records’ similarities, the PB algorithm uses an order of records.

As in the PSNM algorithm, this order can be calculated using the progressive MagpieSort algorithm: Since each

iteration of this algorithm delivers a perfectly arranged subset of records, the PB algorithm can directly use this

to execute the initial comparisons.

B. Attribute Concurrency

The best sorting or blocking key for a duplicate detection algorithm is generally unknown or hard to find. Most

duplicate detection frameworks tackle this key selection unruly by smearing the multi-pass execution

method[15]. This routine finishes the duplicate detection algorithm multiple times using different keys in each

pass. However, the execution order among the different keys is random.

Consequently, favoring good keys over poorer keys already increases the progressiveness of the multi- pass

method. In this section, we present two multi- pass algorithms that dynamically interleave the different passes

based on intermediate results to execute promising iterations earlier. The first algorithm is the attribute

synchronized PSNM (AC-PSNM), which is the progressive enactment of the multi-pass method for the PSNM

algorithm, and the second algorithm is the attribute concurrent PB (AC- PB), which is the conforming

implementation for the PB algorithm[14].

The main loop interweaves the broadenings and assessments of all block pairs by always choosing the most

303 | P a g e

promising block pairs. In this way, the procedure adventures the[13] diverse strengths and weaknesses of each

key independently. For instance, one key might be good in consortium records of duplicate cluster A and

another key might group records of cluster B more competently [15].

V. EVALUATION & EXPERIMENTAL RESULTS

Two progressive duplicate detection algorithms namely PSNM and PB, and their Attribute Concurrency

techniques. Testing algorithms using a much larger dataset and a tangible use case. The graphs used for

performance measurements plot the total number of reported duplicates over time. Each duplicate is a absolutely

matched record pair. For healthier readability, we physically marked some data points from the many hundred

measured data points that make up a graph.[12] The work emphases on growing productivity while keeping the

same efficacy. Hence, we assume a given, correct similarity quantity; it is treated as an exchangeable black box.

VI. MEMORY LIMITATION

We assume that many real-world datasets are considerably larger than the amount of available main memory

which limit the main memory of the machine to 1 GB so that the DBLP- and CSX-dataset do not fit into main

memory entirely. 1 GB of memory corresponds to about 100,000 records that can be loaded at once. The

artificial limitation actually degrades the performance of algorithms more than the performance of the non-

progressive baseline, because progressive algorithms need to access partitions several times[11].

VII. QUALITY MEASURE

In this way, the calculated quality values are visually easy to understand. Baseline approach: The baseline

algorithm, which we use in our tests, is the standard arranged neighborhood method. This algorithm has been

implemented similar to the PSNM algorithm so that it may use load-compare parallelism as well. In this

experiments, it is always executed that SNM and PSNM with the same parameters and optimizations to compare

them in a fair way.

Effect of partition caching and look-ahead.

On the DBLP-dataset, load-compare parallelism performs almost perfectly: the entire load-time is hidden by the

compare-time so that the optimized PSNM algorithm and the optimized SNM algorithm finish nearly

304 | P a g e

concurrently. This is because of the fact that the latency hiding effect abridged the runtime of the PSNM

algorithm by 43 percent but the runtime of the SNM algorithm by only 5 percent. On the[13] larger CSX-

dataset, conversely, the load-compare parallelism strategy reduces the runtime of the SNM algorithm by 11

percent and the runtime of the PSNM algorithm by only 25 percent. This is a notable gain, but since the load

phases are much

longer than the compare phases on this dataset, the optimization cannot hide the full data access latency: the

CSX-dataset contains many extremely large attribute values that increase the load time a lot.

A. Attribute Concurrency

Attribute Concurrency algorithms AC-PSNM and ACPB gradually execute the multi-pass method for the PSNM

algorithm and PB algorithm, correspondingly, favoring good keys over poor keys by dynamically ranking

different passes using their transitional results. Comparing AC-PSNM and AC- PB to the common multi-pass

execution model, which resolves the different keys sequentially in random order.

The experiment uses three different[10],[9] keys, which are {Title}, {Authors}, and {Description}. Since a

common multi-pass algorithm can execute the different passes in any order, it might accidentally choose the best

or worst order of keys. Therefore, we run the traditional, sequential multi-pass algorithm with the optimal key

Sequence 1, two mediocre key Sequences 2 and 3 and the worst key Sequence 4.

Attribute Concurrency on the DBLP-dataset.

VIII. CONCLUSION AND FUTURE ENHANCEMENTS

Improving Efficiency on progressive duplicate detection presented the progressive arranged neighbourhood

method and progressive blocking. These algorithms escalate the efficacy of duplicate detection for state of

affairs with inadequate execution time. They vigorously change the ranking of comparison candidates based on

intermediate results to execute promising assessments first and less promising evaluations later.

To regulate the recital increase of these algorithms, a novel quality measure for progressiveness that integrates

seamlessly with existing measures is projected. Presently, for the construction of a fully progressive duplicate

detection workflow, a progressive sorting method, Magpie, a progressive multi-pass execution model, Attribute

Concurrency, and an incremental transitive closure algorithm. The adaptations AC-PSNM and AC-PB use

multiple sort keys concurrently to interleave their progressive iterations are introduced.

305 | P a g e

By analyzing intermediate results, both slants animatedly rank the dsifferent sort keys at runtime, significantly

easing the key selection problem. In future work, to combine our progressive approaches with scalable

approaches for duplicate detection to deliver results even faster is analyzed. In particular, a two phase parallel

SNM is introduced, which executes a traditional SNM on balanced, overlapping partitions.

REFERENCES

[1]. "Data Mining Curriculum". ACM SIGKDD. 2006-04- 30. Retrieved 2014-01-27.

[2]. Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic (1996). "From Data Mining to Knowledge

Discovery in Databases" (PDF). Retrieved 17 December 2008.

[3]. Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2009). "The Elements of Statistical Learning: Data

Mining, Inference, and Prediction". Retrieved 2012-08- 07.

[4]. Witten, Ian H.; Frank, Eibe; Hall, Mark A. (30 January 2011). Data Mining: Practical Machine Learning

Tools and Techniques (3 ed.). Elsevier. ISBN 978-0-12- 374856-0.

[5]. Think Before You Dig: Privacy Implications of Data Mining & Aggregation, NASCIO Research Brief,

September 2004

[6]. Clifton, Christopher (2010). "Encyclopædia Britannica: Definition of Data Mining". Retrieved 2010-12-09.

[7]. M. A. Hern{ndez and S. J. Stolfo, “Realworld data is dirty: Data cleansing and the merge/purge problem,”

Data Mining and Knowledge Discovery, vol. 2, no. 1, 1998

[8]. Thorsten Papenbrock, Arvid Heise, and Felix Naumann,’ Progressive Duplicate Detection’ IEEE

Transactions on Knowledge and Data Engineering(TKDE),vol . 25, no. 5, 2014.

[9]. A.K. Elmagarmid, P. G. Ipeirotis, and V. S.Verykios, “Duplicate record detection: Asurvey,” IEEE

Transactions on Knowledge and Data Engineering (TKDE), vol. 19, no. 1, 2007.

[10].S. E. Whang, D. Marmaros, and H. GarciaMolina, “Pay-as-you-go entity resolution,” IEEE Transactions on

Knowledge and Data Engineering (TKDE), vol. 25, no. 5, 2012.

[11].U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg, “Adaptive windows for duplicatedetection,” in

Proceedings of the International Conference on Data Engineering (ICDE), 2012.

