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ABSTRACT 

Introduced   Fixed point theorem is  define new concept of F-contraction mapping and  which generalizes the 

Banach Space contraction principle, we present some new fixed point results for F-expanding mappings, 

especially on a complete G-metric space. 

Keywords:  Fixed Point F-Contraction Map, F-Expanding Map, G-Metric Space 

 

1 INTRODUCTION 

Let (X,d)(X,d) be a metric space. A mapping T:X→X is said to be expanding if   

                  ∀x,y∈X    d(Tx,Ty) ≥ λd(x,y),whereλ>1. 

The condition λ>1 is important, the function T:R→R defined by Tx=x+e
x
 satisfies the condition |Tx−Ty|  ≥  

|x−y| for all x,y∈R, and T has no fixed point. 

For an expanding map, the following result is well known. 

Theorem 1.1 

Let (X,d)(X,d) be a complete metric space, and let T:X→X be surjective and expanding. Then T is bijective and 

has a unique fixed point. 

It follows from the Banach contraction principle and the following very simple observation. 

Lemma 1.2 

If  T:X→X is surjective, then there exists a mapping T∗:X→X such that T∘T∗ is the identity map on X. 

Proof 

For any point x∈X, let yx∈X  be any point such that Tyx= x. Let T∗x=yx for all x∈X Then (T∘T∗)(x)=T(T∗x) for 

all x∈X . 

In the present paper, we introduce a new type of expanding mappings. 

Definition 1.3 

Let Ғ  be the family of all function F:(0,+∞)→R  such that 

(F1): F is strictly increasing, i.e., for all α,β∈(0,+∞), if α< β, then F(α)<F(β); 

(F2): for each sequence {αn} ⊂ (0,+∞) , the following holds: 

 if and only if   

 (F3): there exists k∈(0,1) such that  



 

754 | P a g e  

 

Definition 1.4 

Let (X,d) be a metric space. A mapping T:X→X  is called F-expanding if there exist F∈F and t > 0 such that for 

all x,y∈X, 

d(x,y)>0 ⇒ F(d(Tx,Ty)) ≥  F(d(x ,y)) + t.                                                                                                   (2) 

When we consider in (2) the different types of the mapping F∈FF∈F, then we obtain a variety of expanding 

mappings. 

Example 1.5 

Let F1(α)=lnα .It is clear that F1F1 satisfies (F1), (F2), (F3) for any k∈(0,1). Each mapping T:X→X satisfying 

(2) is an F1-expanding map such that 

d(Tx,Ty) ≥ etd(x,y) for all x,y ∈X, . 

It is clear that for x,y ∈X such that x=y, the inequality d(Tx,Ty) ≥ e
t
d(x,y) also holds. 

Example 1.6 

If F2(α)=ln α+α, α>0, then F1 satisfies (F1), (F2) and (F3), and condition (2) is of the form 

d(Tx,Ty)ed(Tx,Ty)−d(x,y)  ≥  etd(x,y) for all x,y∈X.. 

Example 1.7 

Consider F3(α)=ln(α
2
+α), α>0. F3 satisfies (F1), (F2) and (F3), and for F3-expanding T, the following condition 

holds: 

d(Tx,Ty).      ≥etd(x,y) for  all x ,y ∈ X. 

Example 1.8 

Consider F4(α)=arctan(− ), α>0α>0. F4 satisfies (F1), (F2) and (F3), and for F4-expanding T, the following 

condition holds: 

 

d(Tx,Ty) ≥    d(x,y) for some 0 < t <   

Here, we have obtained a special type of nonlinear expanding map  

d(Tx,Ty)     ≥ φ (d(x,y))d(x,y). 

Other functions belonging to F are, for example, F(α)=ln(α
n
), n∈ , , α > 0;  

   F(α)=ln(arctan α), α > 0. 

  Now we recall the following. 

Definition 1.9 

Let (X,d) be a metric space. A mapping T:X→X is an F-contraction on X if there exist F∈F and t > 0 such that 

for all x, y ∈ X, 

d(Tx,Ty)>0 ⇒ t + F(d(Tx,Ty))  ≤  F(d(x,y))..                                                                                 (3) 

For such mappings, Wardowski [1] proved the following theorem. 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR1
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Theorem 1.10 

Let (X,d) be a complete metric space and T:X→X be an F-contraction. Then T has a unique fixed point  u ∈ X 

and for every x∈X, a sequence {xn = T
n
x} is convergent to u. 

 

II THE RESULT 

In this section, we give some fixed point theorem for F-expanding maps. 

Theorem 2.1 

Let (X,d) be a complete metric space and T:X→X  be surjective and F-expanding. Then T has a unique fixed 

point. 

Proof 

From Lemma 1.2, there exists a mapping T∗:X→X  such that T∘T is the identity mapping on X.                    

Let x,y ∈ X  be arbitrary points such that x≠y, and let z=T∗x and w=T∗y (obviously, z≠w).                                  

By using (2) applied to z and w, we have 

F(d(Tz,Tw)) F(d(z,w)) + t. 

Since Tz=T(T∗x) = x and Tw=T(T∗y)=y, then 

F(d(x,y))  F(d(T∗x,T∗y)) + t, 

so T∗:X→X is an F-contraction. By Theorem 1.10, T∗ has a unique fixed point u∈X. In particular, u is also a 

fixed point of T because T∗u = u implies that Tu=T(T∗u) = u. 

Let us observe that T has at most one fixed point. If u,v ∈X and Tu=u≠v, then we would get the contradiction 

F(d(Tu,Tv)) F(d(u,v)) + t,  

0=F(d(Tu,Tv)) - F(d(u,v)) ≥  t  > 0, 

so the fixed point of T is unique. 

Remark 2.2 

If T is not surjective, the previous result is false. For example, let X=[0,∞) endowed with the metric  d(x,y)  =  

|x−y|  for all x,y ∈ X  , and let T:X→X  be defined by Tx=2x + 1  for all x ∈ X  Then T satisfies the condition  

d(Tx,Ty)  ≥   2d(x,y) for all x,y ∈ X  and T is fixed point free. 

 

III APPLICATIONS TO G-METRIC SPACES 

In 2006 Mustafa and Sims (see [2] and the references therein) introduced the notion of a G-metric space and 

investigated the topology of such spaces. The G-metric space is as follows. 

Definition 3.1 

Let X be a nonempty set. A function G:X×X×X→[0,∞) satisfying the following axioms: 

(G1)          G(x,y,z) = 0  if x=y=z, 

(G2)          G(x,x,y) > 0 for all x, y ∈X with x ≠ y, 

(G3)          G(x,x,y) ≤ G(x,y,z) for all x,y,z∈X with z ≠ y, 

(G4)          G(x,y,z) ≤ G(x,z,y) = G(y,z,x)= (symmetry in all three variables), 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar11
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
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(G5)          G(x,y,z) ≤ G(x,a,a) + G(a,y,z) for all x, y ,z ,a ∈ X, 

is called a G-metric on X, and the pair (X,G) is called a G-metric space. 

Recently, Samet et al. [3] observed that some fixed point theorems in the context of G-metric spaces can be 

concluded from existence results in the setting of quasi-metric spaces. Especially, the following theorem is a 

simple consequence of Theorem 1.10. 

Theorem 3.2 

Let(X,G) be a complete G-metric space, and let T:X→X satisfy one of the following conditions: 

(a)T is an F-contraction of type I on a G-metric space X, i.e., there exist  

   F∈ F and t>0t>0 such that for all x,y ∈ X, 

   G(Tx,Ty,Ty) > 0 ⇒ t + F(G(Tx,Ty,Ty)) ≤  F(G(x,y,y));                                                 (4) 

 (b)T is an F-contraction of type II on a G-metric space X, i.e., ther exist F∈F  

    and t>0  such that for all x, y, z ∈X, 

G(Tx,Ty,Tz) > 0  ⇒  t + F(G(Tx,Ty,Tz))  ≤  F(G(x,y,z)).                                                 (5) 

 Then T has a unique fixed point u∈X, and for any x∈X , a sequence { xn=T
n
x }    is G-convergent to u. 

The previous ideas lead also to analogous fixed point theorems for F-expanding mappings on G-metric spaces. 

Definition 3.3 

A mapping T:X→X  from a G-metric space (X,G) into itself is said to be 

1. (a)  F-expanding of type I on a G-metric space X  if there exist F∈ F and t > 0 such that for all x, y ∈ X, 

G(x,y,y)>0   ⇒  F(G(Tx,Ty,Ty)) ≥ F(G(x,y,y)) + t ;                                                          (6) 

  

(b)F-expanding of type II on a G-metric space X if there exist F ∈ F and t > 0 such that for all x,y,z ∈ X, 

G(x,y,z)>0  ⇒ F(G(Tx,Ty,Tz)) ≥ F(G(x,y,z)) + t..                                                            (7) 

 Theorem 3.4 

Let (X,G) be a complete G-metric space and T:X→X be a surjective and F-expanding mapping of type I(or type 

II). Then T has a unique fixed point. 

Proof 

Let T be an F-expanding mapping of type I. From Lemma 1.2, there exists a mapping T*: X→X such 

that ToT* is the identity mapping on X. Let x,y∈X be arbitrary points such that x≠y and let ξ=T
*
x and η=T

*
y. 

Obviously, ξ ≠ η ,  and G(ξ,η,η) > 0. By using (6) applied to ξ  and  η,  we have 

F(G(Tξ,Tη,Tη))   ≥   F(G(ξ,η,η))  + t. 

Since Tξ=T(T*x) = x and Tη=T(T*y) = y, then 

F(G(x,y,y))  ≥ F(G(T*x,T*y,T*y))  +  t,, 

so T*  is an F-contraction of type I on a G-metric space (X,G). Theorem 3.2 guarantees that T* has a unique 

fixed point  u ∈ X. The point u is also a fixed point of T because Tu=T(T*u)=u. 

Now, we prove the uniqueness of the fixed point. Assume that v is another fixed point of T different from  u: Tu 

=  u≠v = Tv. This means G(u,v,v)  > 0, so by (6) 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR3
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar11
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ6
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar16
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ6
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0  <  t  ≤   F(G(Tu,Tv,Tv))  −  F(G(u,v,v))=0,, 

which is a contradiction, and hence u=v. 

For F-expanding mappings of type II, it is necessary to take z = y  and apply the proof for F-expanding 

mappings of type I. 

 

As a corollary of Theorem 3.4, taking F1∈ F, see Examples 1.5, we obtain the following. 

Corollary 3.5[2], Corollary 9.1.4Let (X,G) be a complete G-metric space and T:X→X  be surjective, and 

let there exist λ > 1 such that 

G(Tx,Ty,Ty)  ≥   λG(x,y,y) for all x, y ∈ X, 

or 

G(Tx,Ty,Tz) ≥ λG(x,y,z)for all x ,y, z ∈ X. 

Then T has a unique fixed point. 

Remark 3.6  If T is not surjective, the previous results are false.Consider X=(−∞,−1]∪[1,∞) endowed with 

the G metric G(x,y,z)= |x−y| +| x−z| + |y−z| for all x, y ,z ∈ X and the mapping T: X→X defined by Tx= −2x. 

Then       G(Tx, Ty, Tz)     ≥  2G(x,y,z) for all x, y , z ∈ X and T has no fixed point. 

Now, we will improve some results contained in the book [2]. We will use the following observation: if T:X→X 

 is a subjective mapping, based on each x0∈ X, there exists a sequence {xn} such that Txn+1=xn for all  n  ≥ 0  

Generally, a sequence {xn} verifying the above condition is not necessarily unique. 

Theorem 3.7  

Let (X,G) be a complete G-metric space, and let T:X→X  be a surjective mapping. Suppose that there exist 

F∈F and  t > 0 such that for all x,y ∈ X, 

G(x,Tx,y)>0   ⇒ F(G(Tx,T2x,Ty)) ≥ F(G(x,Tx,y)) + t.                       (8) 

Then T has a unique fixed point. 

Proof 

Let x0 ∈ X be arbitrary. Since T is surjective, there exists x1∈ X such that Tx1 = x0 . By continuing this 

process, we can find a sequence {xn=Txn+1} for all n=0,1,2,……. If there exists n0 ∈N U{0} such that xn0=xn0+1 , 

then xn0+1  is a fixed point of T. 

Now assume that xn≠xn+1 for all n  ≥ 1. Then G(xn+1,xn,xn) > 0  for all n ≥ 1, and from (8) with x = 

xn+1 and y=xn, we have, for all n  ≥ 1, 

F(G(xn,xn−1,xn−1)) =  F(G(Txn+1,T
2xn+1,Txn)) 

                             ≥  F(G(xn+1,Txn+1,xn))  + t  =  F(G(xn+1,xn,xn)) + t, 

and hence 

t + F(G(xn+1,xn,xn))  ≤  F(G(xn, xn−1, xn−1)).                                                                                                       (9). 

Using (9), the following holds for every n ≥ 1: 

F(G(xn+1,xn,xn))   ≤  F(G(xn,xn−1,xn−1)) − t   

 ≤   F(G(xn−1,xn−2,xn−2)) − 2t  ≤ ---- ≤ F(G(x1,x0,x0)) − nt.                                                                                (10) 

From (10) we obtain 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar18
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar6
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ8
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ9
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ10
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which together with (F2) gives 

                                                                                                                          (11) 

From (F3) there exists k∈ (0,1) such that 

F(G(xn+1,xn,xn))k  0                                                                                             (12)                                                                 

By (10), the following holds for all n  ≥ 1: 

[G(xn+1,xn,xn)]
kF(G(xn+1,xn,xn))  −  [G(xn+1,xn,xn)]

k F(G(x1,x0,x0)) 

≤  [G(xn+1,xn,xn)]
k(F(G(x1,x0,x0)) − nt) 

− [G(xn+1,xn,xn)]
kF(G(x1,x0,x0))= − [G(xn+1,xn,xn)]

k . nt                                                                                   (13) 

Letting n→∞  in (13) and using (11), (12), we obtain 

 [G(xn+1,xn,xn)]
k .n=0                                                                   . (14) 

Now, let us observe that from (14) there exists n1  ≥  1 such that 

                                             [G(xn+1,xn,xn)]
k .n ≤ 1 for all  n  ≥  n1. 

Consequently, we have 

                                                       G(xn+1,xn,xn) ≤     all n  ≥ n1.. 

Since the series 
      

converges, for any ε > 0, there exists n2  ≥  1 such that  

< ε   In order to show that {xn} is a Cauchy sequence, we consider m > n > max{n1,n2}. From [2], 

Lemma 3.1.2(4), we get 

G(xn+1,xn,xn)  ≤  

                       ≤  ≤   ≤  ε. 

Therefore by [2], Lemma 3.2.2 and axiom (G4) {xn} is a Cauchy in a G-metric space (X,G).From the 

completeness of (X,G), there exists u ∈ X such that {xn}→u  As T is surjective, there exists w ∈ X  such 

that u=Tw. From (8) with x = xn+1 and y=w, we have, for all n ≤ 1, 

F(G(xn+1,xn,u) = F(G(Txn+1,T
2xn+1,Tw)) 

                          ≥ F(G(xn+1,Txn+1,w)) + t = F(G(xn+1,xn,w)) +  t, 

and hence 

F(G(xn+1,xn,u)  > F(G(xn+1,xn,w))                                                                                                                         (15) 

By (F1) from (15), we have 

G (xn+1,xn,u)  > G(xn+1,xn,w)   for all  n  ≥ 1                                                          (16)                                   

Using the fact that the function G is continuous on each variable ([2], Theorem 3.2.2), taking the limit 

as n→∞ in the above inequality, we get 

G(u,u,w)  =  F(G (xn,xn+1,u))  =0,, 

that is, u= w. Then u is a fixed point of T because u = Tw =Tu. 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ10
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ13
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ11
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ12
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ14
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ8
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ15
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
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To prove uniqueness, suppose that u,v ∈ X  are two fixed points. If Tu=u≠v =Tv, then G(u,u,v) > 0 So, by (8), 

F(G(u,u,v)) =F(G(Tu,T2u,Tv)) 

                   ≥ F(G(u,Tu,v)) + t =F(G(u,u,v)) + t, 

which is a contradiction, because t > 0. Hence, u=v . 

Taking F1∈ F, see Example 1.5, we obtain the following. 

Corollary 3.8 [2], Theorem 9.1.2    Let (X,G)(X,G) be a complete G-metric space and T:X→X  be a 

surjective mapping. Suppose that there exists λ>1 such that 

G(Tx,T2x,Ty)  ≥  λG(x,Tx,y)f or allx ,y ∈ X.. 

Then T has a unique fixed point. 

Next result does not guarantee the uniqueness of the fixed point. 

Theorem 3.9 

Let (X,G)(X,G) be a complete G-metric space, and let T:X→X  be a surjective mapping. Suppose that there 

existF ∈ f  and  t > 0 such that for all x,y ∈ X , 

 G(x,Tx,T2x)  > 0 ⇒  F(G(Tx,Ty,T2y))    ≥    F(G(x,Tx,T2x))   +   t.                                                     (17) 

Then T has a fixed point. 

Proof 

Let x0 ∈X  be arbitrary. Since T is surjective, there exists x1∈X such that x0=Tx1. By continuing this process, 

we can find a sequence {xn=Txn+1} for all n ≥ 0. If there exists n0 ≥ 0 such that xn0=xn0+1, then xn0+1  is a 

fixed point of T. 

Now, assume that xn≠xn+1  for all n ≥ 0 . From (17) with x=xn+1  and y=xn, 

 we have G(xn+1,Txn+1,T
2
xn+1)  = G(xn+1,xn,xn−1) > 0  and 

F(G(xn,xn−1,xn−2))=F(G(Txn+1,Txn,T
2xn)) 

  F(G(xn+1,Txn+1,T
2xn+1)) + t  = F(G(xn+1,xn,xn−1))  + t, 

and hence 

                             F(G(xn+1,xn,xn−1))  ≤  F(G(xn,xn−1,xn−2)) − t  

                               ≤  F(G(xn−1,xn−2,xn−3)) − 2t    

                                                            ≤   F(G(x2,x1,x0)) − (n−1)t.                                                          (18) 

From (18), we obtain 

 

which together with (F2) gives 

 

Mimicking the proof of Theorem 3.7, we obtain 

 

and consequently, there exists n1   ≥  1 such that 

                                                                            G(xn+1,xn,xn−1)   ≤      for all n >n1 

https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ8
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar6
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#CR2
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ17
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#Equ18
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-017-0602-3#FPar22


 

760 | P a g e  

 

Since the series  converges, for any ε > 0, there exists n2 ≥ 1 such that  . In order to 

show that {xn} is a Cauchy sequence, we consider m>n>max{n1,n2}. From [2], Lemma 3.1.2(4) and axioms 

(G3), (G4), we get 

                                                  G(xm,xn,xn) ≤  

                                    

Therefore, by [2], Lemma 3.2.2, {xn}{xn} is a Cauchy in a G-metric space (X,G). From the completeness 

of (X,G), there exists u X  such that {xn}→u. As T is surjective, there exists w ∈ X such that u=Tw. From 

(17) with x=w and y=xn+1, we have 

       F(G(u,xn,xn−1))  =F(G(Tw,Txn+1,T
2xn+1))  ≥ F(G(w,Tw,T2w)) + t , 

so 

                    F(G(w,Tw,T2w))  ≤  F(G(u,xn,xn−1))  -  t  <  F(G(u,xn,xn−1))   

Using (F1), we have 

                      G(w,Tw,T2w) <  G(u,xn,xn−1)for all n  ≥ 1. 

Using the fact that the function G is continuous on each variable ([2], Theorem 3.2.2), taking the limit 

as n→∞n→∞ in the above inequality, we get 

                            G(w,Tw,T2w)=  G(u,xn,xn−1) =  0  

                              that is, w=Tw=T
2
w. Hence, u=Tu. 

Taking F1∈ F, see Examples 1.5, we obtain the following. 

 

IV CONCLUSION   

Theorme:- Let (X,G)(X,G) be a complete G-metric space and T:X→X be a surjective mapping. Suppose that 

there exists λ > 1 such that 

G(Tx,Ty,T2y)   ≥  λG(x,Tx,T2x) for all x, y ∈ X.. 

Then T has, a fixed point.with F –Expanding Mapping . 
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