

736 | P a g e

A HYBRID GENETIC ALGORITHM FOR THE

LONGEST COMMON SUB-SEQUENCE OF

MULTIPLE SEQUENCES: A REVIEW

Aman Rawat
1
, Vishal Thakuria

2
, Pradeep Gehlot

3
, Deepak Garg

4

1,2,3,4
Dept. of Computer Applications, National Institute of Technology Kurukshetra (India)

ABSTRACT

The k-LCS (longest common sub-sequence)problem is to find the LCS of k sequences. The k-LCS is difficult when

the length and the number of sequences are significant. For solving this problem, in this paper, we have

reviewed Expansion algorithm, Best next for maximal available symbol algorithm, Genetic algorithm and Ant

colony optimization algorithms. By taking good features of above algorithms we have proposed a hybrid method,

which is a combination of Genetic algorithm and Hill climbing algorithm. In our review, we compare our

method with expansion algorithm, best next for maximal available symbol algorithm, GA and ACO algorithm.We

have introduced a local search heuristic, hill climbing, with the GA to solve the above problem.

Keywords: Crossover, Expansion Algorithm,Genetic Algorithm, Hill Climbing, Mutation.

1. INTRODUCTION

Given k number of sequences, we need to find LCS(Longest Common Sub sequence) from the given sequences

in k-LCS problem. Suppose we have a set S of input sequences, S={ s1,s2,….,sk }. If P is a sub-sequence of all

Si for 1 ≤ i ≤ k , then P is said to be a common sub-sequence (CS) of set S. For example, consider the set S ={s1

= DPFIPDF, s2 = FPIPDIF, s3 = IPPFDPF}.The sequences DF, FPF and PPDF are common sub-sequences in

s1, s2 and s3. If P is the longest in all of the common sub-sequences of S, then P is the LCS of S. LCS problem

is a well-known problem in computer science [4, 5, 8, 13]. If the size of S is an arbitrary number, k, where k > 2,

the k-LCS problem is an NP-hard problem even over binary alphabet. Using exhaustive search to find the all the

CS in k sequences when k is significant is a difficult task. Dynamic programming based solution requires O(n
2
)

space and time for solving 2-LCS[17]. Heuristic algorithms have been proposed for solving this problem where

effective evaluation techniques are used to determine the quality of CS.The expansion algorithm (EA) is

proposed by Bonizzoni et al. [1]. The algorithm uses streams to denote each sequence in the input set S, and then

find the LCS of these streams. A stream is a sequence without contiguously same symbol. However, the

performance is not satisfactory. Huang et al. propose a best next for maximal available symbols (BNMAS)

algorithm [7] for determining highly possible symbols as elements of LCS based on the occurrence frequency of

each common symbol in the input sequences. It is an intuitive method to select common characters from

sequences. Various evolutionary algorithms are there to simplify the searching limitations. Ant colony

optimization (ACO) algorithm for the k-LCS problem was proposed by Shyu and Tsai [11]. It uses the

737 | P a g e

characteristics of ant searching for food and uses this to find the common sub-sequence in S [3]. It uses

adaptation by relieving on the concentration of pheromone and probabilities to decide next symbol to choose to

get superior results. The ACO remembers better solutions that have been recovered, then decides the character

that is best common character and then appends it to the CS. Genetic Algorithm (GA) relies on the bio-inspired

process such as crossover, selection and mutation to solve the optimization problem. An algorithm was proposed

by Chiang et al. for solving the k-LCS problem [2]. The chromosomes are regarded as CS and are evolved in

further generations using crossover and mutation operators to find the better common sub-sequence. Based on

the fitness function the better results from the chromosomes are retained to form the new generation and are

used for evolution in the subsequent generations[12]. As the good part of the result is retained, this helps find a

better solution in next generations.

III. RELATED WORK

3.1 Dynamic Programming Based Solution for 2 LCS

Needleman and Wunsch [17] used Dynamic Programming to calculate 2-LCS on a matrix of (m+1)×(n+1) .Let

C = c1c2 … ci …cm and D = d1d2 …dj …dn be the two input strings. Let L(i, j) denote the length of string C and

string D, where 0 <=i <=m and 0 <=j <=n. For every entry L(i,j), there will be three cases as stated in the figure

2.1 Based on them, to calculate L(i,j), first L(i-1,j), L(i,j-1) and L(i-1, j-1) needs to be calculated. With each

calculation of L(i, j), where 0<=i <=m, 0<=j<=n, we can eventually obtain L(m,n), the LCS length of C and D.

So Needleman and Wunsch's algorithm for 2-LCS formula can be represented as follows.

Algorithm: Dynamic Programming Algorithm of 2-LCS Input: Two sequences C and D

Output: The length of LCS (C,D)

{Step 1. calculate L(i,j) based on Equation 2.1}

 for i = 0 to|C| do

for j = 0 to |D| do

if i = 0 or j = 0 then

L(i,j) ← 0

else if C[i] = D[j] then

L(i,j) ← L(i - 1, j - 1) + 1

else

L(i, j) ← max{L(i, j - 1),L(i - 1, j)}

end if

738 | P a g e

end for

 end for

{Step 2. Return the length of LCS(C, D)}

LCS(C, D) ← L(|C|, |D|)

2.2 The Expansion Algorithm

Expansion Algorithm(EA) was proposed by Bonizzoni et al. [4] for solving the k-LCS problem.The streams are

used to represent the sequence in S and then are used to find the LCS. A stream has non contiguous symbols.

Initially, common sub-streams having length more than 2 and a longest common sub-stream T of all sequences

in S are found . Further, all sub-strings are expanded to obtain the approximate long common sub-sequence of S.

Consider S1 = XXXXYYYXXXXYYX and S2 = XXXYYYYXXXXYYY. After encoding, S1 = X
4
Y

3
X

4
Y

2
X

and S2 = X
3
Y

4
X

4
Y

3
. One sub-stream ss of S is XYXY. We expand the initial X, and ss now is X

2
YXY. Then

examine if ss is a sub-sequence of both the sequence S1 and S2. The subsequently expanded sub-streams stated

are XY
2
XY, XYX

2
Y, XYXY

2
, X

4
YXY, X

2
Y

2
XY, and so on. Finally, we get ss = X

2
Y

2
X

4
Y

2
. Then, each symbol

is expanded with the maximal value using binary search in a way that the expanded substream is the common

sub-sequence of S1 and S2. Finally we get the ss tas X
3
Y

3
X

4
Y

2
. For k-LCS when the length of input sequence is

n the time complexity is O(kn
3
 log n), . The EA cannot be used when the input sequence is significantly large, it

becomes impractical. A better minimum-spanning-tree-based(MSTG) [14]algorithm was proposed by Tsai and

Hsu that can be used to find better common stream.

2.3 The Best Next for Maximal Available Symbols

Best Next for Maximal Available Symbols (BN-MAS) was proposed by Huang et al. [15] for solving the k-LCS

problem. In this algorithm, a set S having k sequences over finite letter Σ. The main aim of the algorithm is to

list the count of each different character before ai in every sequence, for 1 ≤ i ≤ n, and select the one that has the

most available characters as the common sub-sequence. After that, remove the selected character and the

characters that are beyond the selected character from each sequence, and again write the available symbols till

there is no such common character in all the sequences . Available characters can be shows as count of each and

every characters before the i th character For example, S1 = XYYXVVXZXXYZ, the available characters of

S1[12](= Z) are two V, three Y , five X and two Z (including symbol Z itself.) So v[Z,1] = [2, 5, 3, 2]. In this

Algo., we first record the v(σ, j) as the available characters of symbol σ in sequence j, and we are only focus

about the symbols that are located at the rightmost position. For example, consider four sequences in set S, that

are {S1 = XYYXVVXZXXYZ, S2 = VXYZVYVXYXYZ S3 = VXVYVZXZVYXV, S4 =

VYXYVVXZXVXY}.To calculate v(Z), we have to calculate v(Z, 1) = [2, 5, 3, 2], v(Z, 2) = [3, 3, 3, 3], v(Z, 3)

= [3, 2, 1, 2], and v(Z, 4) = [3, 2, 2, 1] initially. Then v(Z) = min{v(Z,1),v(Z,2),v(Z,3),v(Z,4)} = [2, 2, 1, 1]. We

will Repeat it again then the steps, we can get v(V) = [2, 1, 2, 0], v(X) = [2, 3, 2, 1], and v(Y) = [2, 2, 2, 1]. We

shows Sum(v[σ]) as the sum of all elements in v[σ]. Then we choose the σ with the maximum Sum(v[σ]) into the

common sub-sequence. In this example, we choose the X into the common sub-sequence. After that, we

eliminate the character X and all the characters after X in each sequence, we can get S1’ = XYYXVVXZX, S2’ =

VXYZVYVXZ, S3’ = VXVYVZXZVY, and S4’ = VYXYVVXZXV. Repeat again the above steps, we will get

739 | P a g e

the common subs-equence as XYVXZX. The time complexity of BNMAS is O(σ
2
kn + σ

3
n), where σ= |Σ|, k =

|S|, and n is the length of the longest sequence in S. As the sequence length increases gradually this algorithm

under-performs.

2.4 ACO for k-LCS

Ant Colony Optimization(ACO) algorithm for solving the k-LCS problem was proposed by Shyu and Tsai [21].

The main motive of the algorithm is to discover common characters that are at better positions in the sequences

and can help compose a larger common sub-sequence. Each symbol is transformed to one state, and use the ants'

pheromone and probabilities as the decision criteria to locate the symbol that must be chosen to form the

common sub-sequence. Consider a set S having sequences: S1=VYYVXXVZVVYZ, S2=XVYZXYXVZGYZ,

S3=XVXYXZVZXYVX.

Step 1: Randomly select m sequences (m < |S|) as artificial ants. Suppose m = 1 and the artificial ant is S2. Then

each symbol in S2 is transformed into following state: XVYZXYXVZVYZ →(X,1), (V, 2), (Y, 3), (Z, 4), (X,

5), (Y, 6), (X, 7), (V, 8), (Z, 9), (V, 10),(Y, 11), (Z, 12).

Step 2: Randomly select a state as the common sub-sequence.Assume we choose (V,2) as the candidate for

common sub-sequence, then we find the leftmost V in each sequence, and mark them as the common character

V, common sub-sequence (CS) ← V.S1 = VYYVXXVZVVYZ S2 = XVYZXYXVZVYZ S3 =

XVXYXZVZXYVX

Step 3: According to the probability function, select the next state p in S2 inside length d, and then find the

closest p of V. Suppose d = 3, p may be (Y,3), (Z,4), (X,5). We select (X,5) as p. Then we find the closest X of

G in S1 and S3, and mark them. S1 = VYYVXXVZVVYZ, S2 = XVYZXYXVZVYZ, S3 =

XVXYXZVZXYVX

Step 4: Repeat Step 3, until the the generation-best result can’t be improved by artificial ants in 100 consecutive

generations.

2.5 Genetic Algorithm for k-LCS

Genetic Algorithm to solve k-LCS was developed by Chiang et al. [2]. As the part of the algorithm we choose

the smallest sequence from set S that contains k sequences. The smallest one is our template sequence. In

different words we can say a template pattern of binary string i.e 0 or 1 is randomly generated and if we write all

the letters corresponding to 1 in template sequence, the final result is the template sub-sequence.For a template

sequence t = BAABCDGFHTBC and a template pattern tp = 010110111011. Then the generated template sub-

sequence ts =ABCGFHBC. For k sequences in set S we will randomly generate tp template patterns as our

initial populations set. Then we will apply crossover on randomly choosing 2 different template patterns. Then

again we will choose a template pattern randomly and mutation operation is applied by choosing a mutation

point j and toggling the bit at that point from 0 to 1 or 1 to 0. Finally we use fitness function to determine

whether the template pattern is good or not.

We use fitness function given in 2.2 where |S| denotes the input sequences in set S, Pj
m
 is the occurrences of

pattern Pj in the sub-sequences S, Pj
v
 is the sum of letters that Pj is matched to all sequences in S, and f(Pj) gives

the fitness function of the pattern Pj.

740 | P a g e

 Pj
m

× Pj
v

if Pj
m

= |S| (2.2)[2]

 f(Pj) = -1× (|S| - Pj
m

) × Pj
v
otherwise.

Genetic Algorithm

Output: The CS of S

{Step 1. Initialize population g}

 Produce p template patterns P , choose the last sequence as the template sequence Slast

{Step 2. Reproduce the template sub-sequences Subi}

 for i = 0 to p do

 for j = 0 to n do

if Pi[j] = 1 then

Subi  Slast[j]

end if

end for

 end for

{Step 3. Compare template sub-sequences with input sequences}

The Fitness function(Pj)

{Step 4. Reproduce new Pj}

 Parent1 ← random(P); Parent2 ← random(P)

Crossover(Parent1 , Parent2)

Parent3←random(P)

Mutation(Parent3)

{Step 5.After repeat Step 2 to Step 4, return the CS} Termination condition: G generations are reached or

f(Phighest) is not changed in 10 consecutive generations }. CS  S1

III. COMPARISON TABLE.

Table 1. Comparison table for different algorithms on k-LCS

 DP EA BNMAS ACO GA

Population Single Single Single Single Multiple

Iterative No No No Yes Yes

Fitness

Function

No No No Yes Yes

Crossover No No No No Yes

Mutation No No No No Yes

No. Of

Parameters

Less Less Less More More

Accuracy Good Average Average Good Best

741 | P a g e

VI. PROPOSED ALGORITHM

The Genetic Algorithm comes out to be efficient in terms of the sequence length and accuracy when compared

to other heuristics explained above. We hybridize the Genetic Algorithm by combining Hill Climbing in the

selection of next chromosome. This will add local optimal search to the GS. The mutation and crossover

operation ensures that the search is spread throughout the population space and hill climbing will ensure that we

reach the local optima resulting in better quality solution than the GA. By this we extract the goodness of Hill

Climbing as well as Genetic Algorithm thus helping in achieving better CS with comparatively less execution

time.

VI. HYBRID GENETIC ALGORITHM

Output: The CS of S

{Step 1. Initialize population g}

 Produce p template patterns P , choose the last sequence as the template sequence Slast

{Step 2. Reproduce the template sub-sequences Subi}

for i = 0 to p do

for j = 0 to n do

if Pi[j] = 1 then

Subi  Slast[j]

end if

end for

end for

{Step 3. Compare template sub-sequences with input sequences}

The Fitness function(Pj)

{Step 4. Reproduce new Pj}

Parent1 ← random(P); Parent2 ← random(P)

Crossover(Parent1 , Parent2)

Parent1=Hill_Climbing(Parent1)

Parent2=Hill_Climbing(Parent2)

Parent3←random(P)

Mutation(Parent3)

{Step 5.After repeat Step 2 to Step 4, return the CS} Termination condition: G generations are reached or

f(Phighest) is not changed in 10 consecutive generations }. CS  S1

V. CONCLUSION

The longest common sub-sequence problem is a NP-hard problem when the sequence is large and k is not fixed.

We have reviewed various algorithms for solving the LCS problem and finally came out with the hybrid

approach of our own. We are positive to obtain a comparatively larger common sub-sequence than any other

algorithm reviewed in this paper by extracting the best from Genetic Algorithm and Hill Climbing. Their

742 | P a g e

hybridization will yield in better solution quality and less execution time. The local search optimization using

Hill Climbing gets the best out of Genetic Algorithm when used together. In similar manner other heuristics as

well as meta-heuristic algorithms can also be hybridized with Genetic Algorithm to achieve significantly

improved results.

VI. FUTURE SCOPE

For the future work, the algorithm will be tested on large k having a significantly long length and to optimize the

performance of the algorithm in terms of solution length as well as the execution time. Hybridization with many

other heuristics and meta-heuristics will help achieve this. Furthermore implementation of the algorithm using

Cuckoo Search and Firefly Algorithm will help compare the solution generation process and that will aid in

even better hybridization of the algorithms to get good quality solutions for our problem as well as various other

such problems.

REFERENCES

1. Bonizzoni, P., Vedova, G.D. and Mauri, G.: Experimenting an approximation algorithm for the LCS In:

Discrete Applied Mathematics,Vol. 110, No. 1, pp. 13–24 (2001).

2. Dorigo, M., Maniezzo, V. and Colorni, A.: Ant system- Optimization by a colony of cooperating agents.

In: IEEE Transactions on Systems, Man, and Cybernetics-Part B,Vol. 26, No. 1, pp. 29–41 (1996).

3. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequence. In:

Communications of the ACM,Vol. 18, No. 6, pp. 341–343, (1975).

4. Hirschberg, D. S.: Algorithms for the longest common subsequence problem. In: Journal of ACM, Vol. 24,

pp. 664–675 (1977).

5 . Huang, K.-F, Yang, C.-B. and Tseng, K.-T: An efficient algorithm for multiple sequence Alignment. In:

Proc. of the 19th Workshop on Combinatorial Mathematics and Computation Theory, Kaohsiung, Taiwan,

pp. 50–59 (2002).

6. Huang, K.-S., Yang, C.-B. and Tseng, K.-T: Fast algorithms for finding the common subsequence of

multiple sequences. In: Proceedings of International Computer Symposium, Taipei, Taiwan, pp. 90–95

(2004).

7. Hunt, J.W. and Szymanski, T.G.: A fast algorithm for computing longest common subsequences. In:

Communications of the ACM,Vol. 20, No. 5, pp. 350–353 (1977).

8. Lee, R.C.T., Chang, R.C., Tseng, S.S., and Tsai, Y.T.: Introduction to the Design and Analysis of

Algorithm - a strategic approach.ISBN 007-124346-1. In: McGraw Hill (2005)

9. Maier, D.: The complexity of some problems on subsequences and supersequences. In: Journal of the

ACM, Vol. 25, No. 2, pp. 322–336 (1978).

10. Shyu, S.-J., and Tsai, C.-Y.: Finding the longest common subsequence for multiple biological sequences

by ant colony optimization. In: Computers & Operations Research, Vol. 36, pp. 73–91, (2009).

11. Smith, R.E., Dike, B.A., and Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: Proceedings of

the 1995 ACM symposium on Applied computing, Nashville, TN, USA, pp. 345–350 (1995).

743 | P a g e

12. Wagner, R.A., and Fischer, M.J.: The stringto-string correction problem. In: Journal of the ACM, Vol. 21,

No. 1, pp. 168–173 (1974).

13. Tsai, Y.T., and Hsu, J.T.: An approximation algorithm for multiple longest common subsequence

problems. In: Proceeding of the 6thWorld Multiconference on Systemics, Cybernetics and Informatics,

SCI, pp. 456-460 (2002).

14. Kuo-Si Huang, C.-B.Y., and Tseng, K.-T.: Fast algorithms for Finding the common subsequence of

multiple sequences. In: Proc. of International Computer Symposium, Taipei, Taiwan, Dec. pp.15-17

(2004)

15. Julstrom, B.A., and Hinkemeyer, B.: Starting from scratch: Growing longest common subsequences with

evolution In: Proceedings of the 9th In-ternational Conference on Parallel Problem Solving From Nature

(PPSN IX), Lecture Notes in Computer Science 4193, Springer Berlin / Hei-delberg, pp. 930-938 (2006.)

16. Needleman, D.B., and Wunsch, C.D.: A general method applicable to the search for similarities in the

amino acid sequence of two proteins. In: Journal of Molecular Biology, Vol. 48, No. 3, pp. 443-453

(1970).

