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ABSTRACT 

The k-LCS (longest common sub-sequence)problem is to find the LCS of k sequences. The k-LCS is difficult when 

the length and the number of sequences are significant. For solving this problem, in this paper, we have 

reviewed Expansion algorithm, Best next for maximal available symbol algorithm, Genetic algorithm and Ant 

colony optimization algorithms. By taking good features of above algorithms we have proposed a hybrid method, 

which is a combination of Genetic algorithm and Hill climbing algorithm. In our review, we compare our 

method with expansion algorithm, best next for maximal available symbol algorithm, GA and ACO algorithm.We 

have introduced a local search heuristic, hill climbing, with the GA to solve the above problem. 
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1. INTRODUCTION 

Given k number of sequences, we need to find LCS(Longest Common Sub sequence) from the given sequences 

in k-LCS problem. Suppose we have a set S of input sequences, S={ s1,s2,….,sk }. If P is a sub-sequence of all 

Si for 1 ≤ i ≤ k , then P is said to be a common sub-sequence (CS) of set S. For example, consider the set S ={s1 

= DPFIPDF, s2 = FPIPDIF, s3 = IPPFDPF}.The sequences DF, FPF and PPDF are common sub-sequences in 

s1, s2 and s3. If P is the longest in all of the common sub-sequences of S, then P is the LCS of S. LCS problem 

is a well-known problem in computer science [4, 5, 8, 13]. If the size of S is an arbitrary number, k, where k > 2, 

the k-LCS problem is an NP-hard problem even over binary alphabet. Using exhaustive search to find the all the 

CS in k sequences when k is significant is a difficult task. Dynamic programming based solution requires O(n
2
) 

space and time for solving 2-LCS[17]. Heuristic algorithms have been proposed for solving this problem where 

effective evaluation techniques are used to determine the quality of CS.The expansion algorithm (EA) is 

proposed by Bonizzoni et al. [1]. The algorithm uses streams to denote each sequence in the input set S, and then 

find the LCS of these streams. A stream is a sequence without contiguously same symbol. However, the 

performance is not satisfactory. Huang et al. propose a best next for maximal available symbols (BNMAS) 

algorithm [7] for determining highly possible symbols as elements of LCS based on the occurrence frequency of 

each common symbol in the input sequences. It is an intuitive method to select common characters from 

sequences. Various evolutionary algorithms are there to simplify the searching limitations. Ant colony 

optimization (ACO) algorithm for the k-LCS problem was proposed by Shyu and Tsai [11]. It uses the 
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characteristics of ant searching for food and uses this to find the common sub-sequence in S [3]. It uses 

adaptation by relieving on the concentration of pheromone and probabilities to decide next symbol to choose to 

get superior results. The ACO remembers better solutions that have been recovered, then decides the character 

that is best common character and then appends it to the CS. Genetic Algorithm (GA) relies on the bio-inspired 

process such as crossover, selection and mutation to solve the optimization problem. An algorithm was proposed 

by Chiang et al. for solving the k-LCS problem [2]. The chromosomes are regarded as CS and are evolved in 

further generations using crossover and mutation operators to find the better common sub-sequence. Based on 

the fitness function the better results from the chromosomes are retained to form the new generation and are 

used for evolution in the subsequent generations[12]. As the good part of the result is retained, this helps find a 

better solution in next generations. 

III. RELATED WORK   

3.1  Dynamic Programming Based Solution for 2 LCS 

Needleman and Wunsch [17] used Dynamic Programming to calculate 2-LCS on a matrix of (m+1)×(n+1) .Let 

C = c1c2 … ci …cm and D = d1d2 …dj …dn be the two input strings. Let L(i, j) denote the length of string C and 

string D, where 0 <=i <=m and 0 <=j <=n. For every entry L(i,j), there will be three cases as stated in the figure 

2.1 Based on them, to calculate L(i,j), first L(i-1,j), L(i,j-1) and L(i-1, j-1) needs to be calculated. With each 

calculation of L(i, j), where 0<=i <=m, 0<=j<=n, we can eventually obtain L(m,n), the LCS length of C and D. 

So Needleman and Wunsch's algorithm for 2-LCS formula can be represented as follows. 

 

Algorithm: Dynamic Programming Algorithm of 2-LCS Input: Two sequences C and D 

Output: The length of LCS (C,D) 

{Step 1. calculate L(i,j) based on Equation 2.1} 

 for i = 0 to|C| do 

for j = 0 to |D| do 

if i = 0 or j = 0 then 

L(i,j) ← 0 

else if C[i] = D[j] then 

L(i,j) ← L(i - 1, j - 1) + 1 

else 

L(i, j) ←  max{L(i, j - 1),L(i - 1, j)} 

end if 
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end for 

 end for 

{Step 2. Return the length of LCS(C, D)} 

LCS(C, D) ← L(|C|, |D|)  

 

2.2 The Expansion Algorithm 

Expansion Algorithm(EA) was proposed by Bonizzoni et al. [4] for solving the k-LCS problem.The streams are 

used to represent the sequence in S and then are used to find the LCS. A stream has non contiguous symbols. 

Initially, common sub-streams having length more than 2 and a longest common sub-stream T of all sequences 

in S are found . Further, all sub-strings are expanded to obtain the approximate long common sub-sequence of S. 

Consider S1 = XXXXYYYXXXXYYX and S2 = XXXYYYYXXXXYYY. After encoding, S1 = X
4
Y

3
X

4
Y

2
X 

and S2 = X
3
Y

4
X

4
Y

3
. One sub-stream ss of S is XYXY. We expand the initial X, and ss now is X

2
YXY. Then 

examine if ss is a sub-sequence of both the sequence S1 and S2. The subsequently expanded sub-streams stated 

are XY
2
XY, XYX

2
Y, XYXY

2
, X

4
YXY, X

2
Y

2
XY, and so on. Finally, we get ss = X

2
Y

2
X

4
Y

2
. Then, each symbol 

is expanded with the maximal value using binary search in a way that the  expanded substream is the common 

sub-sequence of S1 and S2. Finally we get the ss tas X
3
Y

3
X

4
Y

2
. For k-LCS when the length of input sequence is 

n the time complexity is O(kn
3
 log n), . The EA cannot be used when the input sequence is significantly large, it 

becomes impractical. A better minimum-spanning-tree-based(MSTG) [14]algorithm was proposed by Tsai and 

Hsu that can be used to find better common stream. 

 

2.3 The Best Next for Maximal Available Symbols 

Best Next for Maximal Available Symbols (BN-MAS) was proposed by Huang et al. [15] for solving the k-LCS 

problem. In this algorithm, a set S having k sequences over finite letter Σ. The main aim of the algorithm is to 

list the count of each different character before ai in every sequence, for 1 ≤ i ≤ n, and select the one that has the 

most available characters as the common sub-sequence. After that, remove the selected character and the 

characters that are beyond the selected character from each sequence, and again write the available symbols till 

there is no such common character in all the sequences . Available characters can be shows as count of each and 

every characters before the i th character For example, S1 = XYYXVVXZXXYZ, the available characters of 

S1[12]( = Z) are two V, three Y , five X and two Z (including symbol Z itself.) So v[Z,1] = [2, 5, 3, 2]. In this 

Algo., we first record the v(σ, j) as the available characters of symbol σ in sequence j, and we are only focus 

about the symbols that are located at the rightmost position. For example, consider four sequences in set S, that 

are {S1 = XYYXVVXZXXYZ, S2 = VXYZVYVXYXYZ S3 = VXVYVZXZVYXV, S4 = 

VYXYVVXZXVXY}.To calculate v(Z ), we have to calculate v(Z, 1) = [2, 5, 3, 2],  v(Z, 2) = [3, 3, 3, 3], v(Z, 3) 

= [3, 2, 1, 2], and v(Z, 4) = [3, 2, 2, 1] initially. Then v(Z ) = min{v(Z,1),v(Z,2),v(Z,3),v(Z,4)} = [2, 2, 1, 1]. We 

will Repeat it again then the steps, we can get v(V) = [2, 1, 2, 0], v(X) = [2, 3, 2, 1], and v(Y) = [2, 2, 2, 1]. We 

shows Sum(v[σ]) as the sum of all elements in v[σ]. Then we choose the σ with the maximum Sum(v[σ]) into the 

common sub-sequence. In this example, we choose the X into the common sub-sequence. After that, we 

eliminate the character X and all the characters after X in each sequence, we can get S1’ = XYYXVVXZX, S2’ = 

VXYZVYVXZ, S3’ = VXVYVZXZVY, and S4’ = VYXYVVXZXV. Repeat again the above steps, we will get 
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the common subs-equence as XYVXZX.  The time complexity of BNMAS is O(σ
2
kn + σ

3
n), where σ= |Σ|, k = 

|S|, and n is the length of the longest sequence in S. As the sequence length increases gradually this algorithm 

under-performs. 

 

2.4 ACO for k-LCS 

Ant Colony Optimization(ACO) algorithm for solving the k-LCS problem was proposed by Shyu and Tsai [21]. 

The main motive of the algorithm is to discover common characters that are at better  positions in the sequences 

and can help compose a larger common sub-sequence. Each symbol is transformed to one state, and use the ants' 

pheromone and probabilities as the decision criteria to locate the symbol that must be chosen to form the 

common sub-sequence. Consider a set S having sequences: S1=VYYVXXVZVVYZ, S2=XVYZXYXVZGYZ, 

S3=XVXYXZVZXYVX. 

Step 1: Randomly select m sequences (m < |S|) as artificial ants. Suppose m = 1 and the artificial ant is S2. Then 

each symbol in S2 is transformed into following state: XVYZXYXVZVYZ →(X,1), (V, 2), (Y, 3), (Z, 4), (X, 

5), (Y, 6), (X, 7), (V, 8), (Z, 9), (V, 10),(Y, 11), (Z, 12). 

Step 2: Randomly select a state as the common sub-sequence.Assume we choose (V,2) as the candidate for 

common sub-sequence, then we find the leftmost V in each sequence, and mark them as the common character 

V, common sub-sequence (CS) ← V.S1 = VYYVXXVZVVYZ S2 = XVYZXYXVZVYZ S3 = 

XVXYXZVZXYVX 

Step 3: According to the probability function, select the next state p in S2 inside length d, and then find the 

closest p of V. Suppose d = 3, p may be (Y,3), (Z,4), (X,5). We select (X,5) as p. Then we find the closest X of 

G in S1 and S3, and mark them. S1 = VYYVXXVZVVYZ, S2 = XVYZXYXVZVYZ, S3 = 

XVXYXZVZXYVX  

Step 4: Repeat Step 3, until the the generation-best result can’t be improved by artificial ants in 100 consecutive 

generations. 

2.5 Genetic Algorithm for k-LCS 

Genetic Algorithm to solve k-LCS was developed by Chiang et al. [2]. As the part of the algorithm we choose 

the smallest sequence from set S that contains k sequences. The smallest one is our template sequence. In 

different words we can say a template pattern of binary string i.e 0 or 1 is randomly generated and if we write all 

the letters corresponding to 1 in template sequence, the final result is the template sub-sequence.For a template 

sequence t = BAABCDGFHTBC and a template pattern tp = 010110111011. Then the generated template sub-

sequence ts =ABCGFHBC.  For k sequences in set S we will randomly generate tp template patterns as our 

initial populations set. Then we will apply crossover on randomly choosing 2 different template patterns. Then 

again we will choose a template pattern randomly and mutation operation is applied by choosing a mutation 

point j and toggling the bit at that point from 0 to 1 or 1 to 0. Finally we use fitness function to determine 

whether the template pattern is good or not. 

We use fitness function given in 2.2 where |S| denotes the input sequences in set S, Pj
m
 is the occurrences of 

pattern Pj in the sub-sequences S, Pj
v
 is the sum of letters that Pj is matched to all sequences in S, and f(Pj) gives 

the fitness function of the pattern Pj. 
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                                     Pj
m 

× Pj
v          

if Pj
m 

= |S|       (2.2)[2] 

       f(Pj) =  -1× (|S| - Pj
m 

) ×  Pj
v 
otherwise.     

Genetic Algorithm 

Output: The CS of S 

{Step 1. Initialize population g} 

 Produce p template patterns P , choose the last sequence  as the template sequence Slast 

{Step 2. Reproduce the template sub-sequences Subi} 

  for i = 0 to p do 

 for j = 0 to n do 

if Pi[j] = 1 then 

Subi  Slast[j] 

end if 

end for 

 end for 

{Step 3. Compare template sub-sequences with input sequences}  

The Fitness function(Pj) 

{Step 4. Reproduce new Pj}  

 Parent1 ← random(P ); Parent2 ← random(P ) 

Crossover(Parent1 , Parent2) 

Parent3←random(P ) 

Mutation(Parent3) 

{Step 5.After repeat Step 2 to Step 4, return the CS}  Termination condition: G generations are reached or 

f(Phighest) is not changed in 10 consecutive generations }.  CS   S1  

 

III. COMPARISON TABLE. 

Table 1. Comparison table for different algorithms on k-LCS 

 DP EA BNMAS ACO GA 

Population Single Single Single Single Multiple 

Iterative No No No Yes Yes 

Fitness 

Function 

No No No Yes Yes 

Crossover No No No No Yes 

Mutation No No No No Yes 

No. Of 

Parameters 

Less Less Less More More 

Accuracy Good Average Average Good Best 
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VI. PROPOSED ALGORITHM 

The Genetic Algorithm comes out to be efficient in terms of the sequence length and accuracy when compared 

to other heuristics explained above. We hybridize the Genetic Algorithm by combining Hill Climbing in the 

selection of next chromosome. This will add local optimal search to the GS. The mutation and crossover 

operation ensures that the search is spread throughout the population space and hill climbing will ensure that we 

reach the local optima resulting in better quality solution than the GA. By this we extract the goodness of Hill 

Climbing as well as Genetic Algorithm thus helping in achieving better CS with comparatively less execution 

time.  

 

VI. HYBRID GENETIC ALGORITHM 

Output: The CS of S 

{Step 1. Initialize population g} 

 Produce p template patterns P , choose the last sequence  as the template sequence Slast 

{Step 2. Reproduce the template sub-sequences Subi} 

for i = 0 to p do 

for j = 0 to n do 

if Pi[j] = 1 then 

Subi  Slast[j] 

end if 

end for 

end for 

{Step 3. Compare template sub-sequences with input sequences}  

The Fitness function(Pj) 

{Step 4. Reproduce new Pj}  

Parent1 ← random(P ); Parent2 ← random(P ) 

Crossover(Parent1 , Parent2)  

Parent1=Hill_Climbing(Parent1) 

Parent2=Hill_Climbing(Parent2) 

Parent3←random(P ) 

Mutation(Parent3) 

{Step 5.After repeat Step 2 to Step 4, return the CS}  Termination condition: G generations are reached or 

f(Phighest) is not changed in 10 consecutive generations }.  CS   S1  

 

V. CONCLUSION 

The longest common sub-sequence problem is a NP-hard problem when the sequence is large and k is not fixed. 

We have reviewed various algorithms for solving the LCS problem and finally came out with the hybrid 

approach of our own. We are positive to obtain a comparatively larger common sub-sequence than any other 

algorithm reviewed in this paper by extracting the best from Genetic Algorithm and Hill Climbing. Their 
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hybridization will yield in better solution quality and less execution time. The local search optimization using 

Hill Climbing gets the best out of Genetic Algorithm when used together. In similar manner other heuristics as 

well as meta-heuristic algorithms can also be hybridized with Genetic Algorithm to achieve significantly 

improved results.  

VI. FUTURE SCOPE 

For the future work, the algorithm will be tested on large k having a significantly long length and to optimize the 

performance of the algorithm in terms of solution length as well as the execution time. Hybridization with many 

other heuristics and meta-heuristics will help achieve this. Furthermore implementation of the algorithm using 

Cuckoo Search and Firefly Algorithm will help compare the solution generation process and that will aid in 

even better hybridization of the algorithms to get good quality solutions for our problem as well as various other 

such problems. 
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