# International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 02, February 2017 www.ijarse.com ONE MODULO THREE GEOMETRIC MEAN LABELING OF SOME FAMILIES OF GRAPHS A.Maheswari<sup>1</sup>, P.Pandiaraj<sup>2</sup>

<sup>1,2</sup>Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar (India)

### ABSTRACT

A graph G is said to be one modulo three geometric mean graph if there is an injective function  $\phi$  from the vertex set of G to the set  $\{a/1 \le a \le 3q - 2 \text{ and either } a \equiv 0 \pmod{3} \text{ or } a \equiv 1 \pmod{3} \}$  where q is the number of edges of G and  $\phi$  induces a bijection  $\phi$  \* from the edge set of G to  $\{a/1 \le a \le 3q - 2 \text{ and } a \equiv 1 \pmod{3} \}$  given by  $\phi$  \*(uv)=  $\left[\sqrt{\phi(u)\phi(v)}\right]$  or  $\left[\sqrt{\phi(u)\phi(v)}\right]$  and the function  $\phi$  is called one modulo three geometric mean labeling of G. In this paper, we establish that some families of graphs are one modulo three geometric mean graphs

Keywords: Mean labeling, one modulo three mean labeling, geometric mean labeling, one modulo three geometric mean labeling, one modulo three geometric mean graph.

## AMS Classification (2010): 05C78

#### **I. INTRODUCTION**

All graphs considered here are simple, finite, connected and undirected. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively. We follow the basic notations and terminologies of graph theory as in [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [2]. The concept of mean labeling was introduced by Somasundaram and Ponraj [3]. A graph G = (p,q) with p vertices and q edges is called a mean graph if there is an injective function f

that maps V(G) to  $\{0, 1, 2, 3, ..., q\}$  such that for each edge uv, is labeled with  $\frac{f(u) + f(v)}{2}$  if f(u) + f(v) is

even and  $\frac{f(u) + f(v) + 1}{2}$  if f(u) + f(v) is odd. Jeyanthi and Maheswari introduced the concept of one modulo three mean labeling in [4]. A graph *G* is called one modulo three mean graph if there is an injective function  $\phi$  from the vertex set of *G* to the set  $\{a/0 \le a \le 3q - 2 \text{ and either } a \equiv 0 \pmod{3} \text{ or } a \equiv l \pmod{3}\}$  where *q* is the number of edges of *G* and  $\phi$  induces a bijection  $\phi^*$  from the edge set of *G* to  $\{a/1 \le a \le 3q - 2 \text{ and either } a \equiv 1 \pmod{3}\}$  given by  $\phi^*(uv) = \left\lceil \frac{\phi(u) + \phi(v)}{2} \right\rceil$  and the function  $\phi$  is called

# International Journal of Advance Research in Science and Engineering

# Vol. No.6, Issue No. 02, February 2017

## www.ijarse.com



one modulo three mean labeling of *G*. The concept of geometric mean labeling was due to Somasundram et al.[5], A graph G=(V,E) with *p* vertices and *q* edges is said to be geometric mean graph if it is possible to label the vertices  $x \in V$  with distinct labels f(x) from 1,2,...,*q*+1 in such a way that when each edge *e=uv* is labeled with  $f(e=uv)=\left[\sqrt{f(u)f(v)}\right]$  or  $\left|\sqrt{f(u)f(v)}\right|$ , then the resulting edge labels are all distinct. In this case, the function *f* is

called geometric mean labeling of G.

Motivated by the concepts in [5] we define a new type of labeling called one modulo three geometric mean labeling as follows: A graph *G* is said to be one modulo three geometric mean graph if there is an injective function  $\phi$  from the vertex set of *G* to the set  $\{a/1 \le a \le 3q - 2 \text{ and either } a \equiv 0 \pmod{3} \text{ or } a \equiv 1 \pmod{3}\}$  where *q* is the number of edges of *G* and  $\phi$  induces a bijection  $\phi$  \* from the edge set of *G* to  $\{a/1 \le a \le 3q - 2 \text{ and either } a \equiv 0 \pmod{3} \text{ or } a \equiv 1 \pmod{3}\}$  or  $\lfloor \sqrt{\phi(u)\phi(v)} \rfloor$  and the function  $\phi$  is called one modulo three geometric mean labeling of *G*. In [6] we proved that  $P_n$ ,  $k_{1,n}$  (n > 2), comb,  $P_n \odot \overline{k_2}$ ,  $s(P_n \odot \overline{k_1})$ ,  $s(P_n \odot \overline{k_2})$ ,  $c_n$  ( $n \ge 5$ ),  $L_n = P_n X P_2$ , are one modulo three geometric mean graphs and also we proved that if *G* is a graph in which every edge lies on a triangle, then *G* is not a one modulo three geometric mean graph.

We begin with a brief summary of definitions which are necessary for the present study.

**Definition1.1:**Duplication of an edge  $e_k = v_k v_{k+1}$  of a graph G produces a new graph G' such that

 $N(v_{k'}) = N(v_{k}) \cup \{v_{k+1'}\} - \{v_{k+1}\} \text{ and } N(v_{k+1'}) = N(v_{k+1}) \cup \{v_{k'}\} - \{v_{k}\}.$ 

**Definition1.2:** The tadpole graph is formed by joining the end point of a path P<sub>\_</sub> to a cycle C<sub>\_</sub>. It is denoted

by C<sub>n</sub> @ P<sub>m</sub>.

**Definition1.3:** A key graph is a graph obtained from  $K_2$  by appending one vertex of  $C_m$  to one end point and comb

graph  $P_n \odot K_1$  to the other end of  $K_2$ . It is denoted as KY(m,n).

**Theorem 1.4[6]:**The comb graph is aone modulo three geometric mean graph.

**Theorem 1.5[6]:** The cycle  $C_n$  is a one modulo three geometric mean graph for  $n \ge 5$ .

**Theorem 1.6[6]:** The path  $P_n$  is a one modulo three geometric mean graph

## **II. ONE MODULO THREE GEOMETRIC MEAN LABELING OF FAMILIES OF GRAPHS**

**Theorem 2.1:**Let  $G_1(p_1, q_1), G_2(p_2, q_2), ..., G_n(p_n, q_n)$  be one modulo three geometric mean cycles or path with  $q_i(1 \le i \le n)$  and  $u_i, v_i$  be the vertices of  $G_i(1 \le i \le n)$  labeled with  $3q_i - 2$  and 1. Then the graph G obtained by joining  $u_1$  with  $v_2$  and  $u_2$  with  $v_3$  and  $u_3$  with  $v_4$  and so on until we join  $u_{n-1}$  with  $v_n$  by an edge is an one modulo three geometric mean graph.

## **Proof:**

The graph G has  $p_1 + p_2 + \dots + p_n$  vertices and  $\sum_{i=1}^n q_i + (n-1)$  edges.

# International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 02, February 2017

### www.ijarse.com



Let  $\phi_i$  be one modulo three geometric mean labeling of  $G_i (1 \le i \le n)$ . Define a vertex labeling  $\phi: V(G) \to \{1, 3, 4, \dots, 3(\sum_{i=1}^n q_i + (n-1)) - 2\}$  as If  $x \in V(G_1), \quad \phi(x) = \phi_1(x)$ If  $x \in V(G_i), \qquad 2 \le i \le n$  $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

$$\phi(x) = \begin{cases} 3\left(\sum_{k=1}^{i} (q_k + 1)\right) \text{ for the lowest vertex label of } G_i \\ \phi_i(x) + 3\left(\sum_{k=1}^{i-1} (q_k + 1)\right) \text{ for all other remaining vertices of } G_i \end{cases}$$

Then the induced edge labels of G are 1, 4, ...,  $3(\sum_{i=1}^{n} q_i + (n-1)) - 2$ . Hence  $\phi$  is one modulo three geometric mean labeling of G.

**Theorem 2.2:** Let  $G_1(p_1, q_1)$ ,  $G_2(p_2, q_2)$ , ...,  $G_n(p_n, q_n)$  be one modulo three geometric mean cycles with  $q_i (1 \le i \le n)$  and  $u_i$ ,  $v_i$  be the vertices of  $G_i (1 \le i \le n)$  labeled with  $3q_i - 2$  and 1. Then the graph G obtained by identifying  $u_1$  with  $v_2$  and  $u_2$  with  $v_3$  and  $u_3$  with  $v_4$  and so on until  $u_{n-1}$  identified with  $v_n$  is an one modulo three geometric mean graph.

#### **Proof:**

The graph G has  $p_1 + (p_2 - 1) + \dots + (p_n - 1) = (p_1 + p_2 + \dots + p_n - (n - 1))$  vertices and  $\sum_{i=1}^n q_i$  edges. Let  $\phi_i$  be one modulo three geometric mean labeling of  $G_i (1 \le i \le n)$ . Define a vertex labeling  $\phi: V(G) \to \{1, 3, 4, \dots, 3(\sum_{i=1}^n q_i) - 2\}$  as

If 
$$x \in V(G_1)$$
,  $\phi(x) = \phi_1(x)$ 

If 
$$x \in V(G_i)$$
,  $2 \le i \le n$   $\phi(x) = \begin{cases} 3(\sum_{k=1}^{i-1} q_k) - 2 & \text{for the lowest vertex label of } G_i \\ \phi_i(x) + 3(\sum_{k=1}^{i-1} q_k) \text{for all other remaining vertices of } G_i \end{cases}$ 

Then the induced edge labels of *G* are 1, 4, ...,  $3(\sum_{i=1}^{n} q_i) - 2$ . Hence  $\phi$  is one modulo three geometric mean labeling of *G*.

**Theorem 2.3:** Let  $G_1(p_1, q_1)$ ,  $G_2(p_2, q_2)$ , ...,  $G_n(p_n, q_n)$  be one modulo three geometric mean cycles with  $q_i (1 \le i \le n)$  and  $e_i$ ,  $e_i'$  be the edges of  $G_i (1 \le i \le n)$  labeled with  $3q_i - 2$  and 1. Then the graph G obtained by identifying  $e_1$  with  $e_2'$  and  $e_2$  with  $e_3'$  and  $e_3$  with  $e_4'$  and so on until  $e_{n-1}$  identified with  $e_n'$  is an one modulo three geometric mean graph.

### **Proof:**

The graph G has  $p_1 + (p_2 - 2) + \dots + (p_n - 2) = (p_1 + p_2 + \dots + p_n - 2(n - 1))$  vertices and  $\sum_{i=1}^n q_i - (n - 1)$  edges.

Let  $\phi_i$  be one modulo three geometric mean labeling of  $G_i (1 \le i \le n)$ .

Define a vertex labeling  $\phi: V(G) \to \{1, 3, 4, \dots, 3(\sum_{i=1}^{n} q_i - (n-1)) - 2\}$  as

If  $x \in V(G_1)$ ,  $\phi(x) = \phi_1(x)$  and If  $x \in V(G_i)$ ,  $2 \le i \le n \phi(x) = \phi_i(x) + 3(\sum_{k=1}^{i-1} (q_k - 1))$ 

Then the induced edge labels of G are 1, 4, ...,  $3(\sum_{i=1}^{n} q_i) - 2$ . Hence  $\phi$  is one modulo three geometric mean labeling of G.

# International Journal of Advance Research in Science and Engineering

# Vol. No.6, Issue No. 02, February 2017

## www.ijarse.com

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

**Theorem 2.4:** The Key graph KY(m,n) is a vertex equitable graph if  $m \ge 5$ . **Proof:** 

Let  $G_1 = P_n \odot K_1$  and  $G_2 = C_m$ . Since  $G_1$  has 2n-1 edges and  $G_2$  has m edges, By Theorem 1.4, 1.5  $P_n \odot K_1$ ,  $C_m$  are

one modulo three geometric mean graphs.

Let  $\phi_i$  be one modulo three geometric mean labeling of  $G_i (1 \le i \le 2)$ .

If 
$$x \in V(G_1)$$
,  $\phi(x) = \phi_1(x)$ 

If  $x \in V(G_2)\phi(x) = \begin{cases} 3(\sum_{k=1}^{i-1}(q_k+1)) & \text{for the lowest vertex label of } G_2 \\ \phi_i(x) + 3(\sum_{k=1}^{i-1}(q_k+1)) & \text{for all other remaining vertices of } G_2 \end{cases}$ 

Then the induced edge labels of G are 1, 4, ..., 3(2n - 1 + m) - 2. Hence  $\phi$  is one modulo three geometric mean labeling of G.

**Theorem 2.5:** The tadpole graph  $C_n @ P_m$  is a one modulo three geometric mean graph for  $n \ge 5$ .

### **Proof:**

Let  $G_1 = C_m$  and  $G_2 = P_n$ . Clearly  $G_1$  has m edges and  $G_2$  has n-1 edges, By Theorem 1.5, 1.6  $C_m$  and  $P_n$  are one modulo three geometric mean graphs.

Let  $G = C_n @ P_m$ , then G has n + m vertices and n + m edges. By Theorem 2.1 the tadpole graph  $C_n @ P_m$  is a one modulo three geometric mean graph.

### Theorem 2.6:

The graph obtained by duplication of an arbitrary edge in  $c_n (n \ge 4)$  admits an one modulo three geometric mean labelling.

### **Proof:**

Let  $C_n$  be the cycle  $u_1, u_2, \dots, u_n, u_1$ .

Let G be the graph obtained by duplicating an arbitrary edge of  $C_n$ .

With out of loss of generality let this edge be  $e = u_1 u_2$  and the newly added edge be  $e' = u_1' u_2'$ .

Then  $V(G) = \{u_1, u_2, ..., u_n, u_1'u_2'\}$ ,  $E(G) = \{E(C_n), e_1', e', e'''\}$  where  $e_2' = u_2'u_3$  and  $e_1' = u_nu_1'$ . Then |V(G)| = n+2 and |E(G)| = n+3.

Define  $\phi: V(G) \to \{1, 3, 4, ..., 3q - 2\}$  by

**Case i:** If *n* is odd,  $n \ge 9$ 

$$\phi(u_1) = 1, \phi(u_2) = 3, \phi(u_3) = 21, , \phi(u_1') = 10, \phi(u_2') = 16 . \phi(u_i) = 28 + 6(i - 4), 4 \le i \le \left\lceil \frac{n}{2} \right\rceil.$$
  
$$\phi\left(u_{\left\lceil \frac{n}{2} \right\rceil + 1}\right) = 3n + 6, \phi(u_n) = 12\phi(u_{n-i}) = 19 + 6(i - 1), \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil - 3.$$

**Case ii :** If *n* is even,  $n \ge 10$ 

# International Journal of Advance Research in Science and Engineering Vol. No.6, Issue No. 02, February 2017

### www.ijarse.com

 $\phi(u_1) = 1, \phi(u_2) = 3, \phi(u_3) = 21, \phi(u_1') = 10, \phi(u_2') = 16, \ \phi(u_i) = 25 + 6(i-4), 4 \le i \le \frac{n}{2} + 1.$ 

 $\phi\left(u_{\frac{n}{2}+2}\right) = 3n + 6, \phi(u_n) = 12, \phi(u_{n-1}) = 24, \ \phi(u_{n-i}) = 28 + 6(i-2), \ 2 \le i \le \frac{n}{2} - 3.$ 

Then the induced edge labels of G are 1, 4, ..., 3(n + 3) - 2. Hence  $\phi$  is one modulo three geometric mean labeling of G.

If n = 4, we define the labeling as  $\phi(u_1) = 1$ ,  $\phi(u_2) = 3$ ,  $\phi(u_3) = 13$ ,  $\phi(u_4) = 18$ ,  $\phi(u_1') = 9$ ,  $\phi(u_2') = 19$ . If n = 5, we define the labeling as  $\phi(u_1) = 1$ ,  $\phi(u_2) = 3$ ,  $\phi(u_3) = 15$ ,  $\phi(u_4) = 10$ ,  $\phi(u_5) = 12$ ,  $\phi(u_1') = 21$ ,  $\phi(u_2') = 22$ .

If n = 6, we define the labeling as  $\phi(u_1) = 1$ ,  $\phi(u_2) = 3$ ,  $\phi(u_3) = 21$ ,  $\phi(u_4) = 16$ ,  $\phi(u_5) = 12$ ,  $\phi(u_6) = 10$ ,  $\phi(u_1') = 24$ ,  $\phi(u_2') = 25$ .

If n = 7, we define the labeling as  $\phi(u_1) = 1$ ,  $\phi(u_2) = 3$ ,  $\phi(u_3) = 21$ ,  $\phi(u_4) = 28$ ,  $\phi(u_5) = 27$ ,  $\phi(u_6) = 19$ ,  $\phi(u_7) = 12$ ,  $\phi(u_1') = 10$ ,  $\phi(u_2') = 16$ .

If n = 8, we define the labeling as  $\phi(u_1) = 1$ ,  $\phi(u_2) = 3$ ,  $\phi(u_3) = 21$ ,  $\phi(u_4) = 25$ ,  $\phi(u_5) = 31$ ,  $\phi(u_6) = 30$ ,  $\phi(u_7) = 22$ ,  $\phi(u_8) = 12$ ,  $\phi(u_1') = 10$ ,  $\phi(u_2') = 16$ .

**Theorem 2.7:** The graph  $c_n \odot k_1$  is a one modulo three geometric mean graph for n > 3..

**Proof:** Let  $u_1, u_2, ..., u_n$  be the vertices of  $C_n$ . Let  $v_i$  be the pendant vertices attached at each  $u_i$  for  $1 \le i \le n$ . Then  $V(G) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ ,  $E(G) = E(C_n) \cup \{e_i = u_i v_i : 1 \le i \le n\}$ Then |V(G)| = 2n and |E(G)| = 2n. Define  $\phi: V(G) \rightarrow \{1, 3, 4, ..., 3(2n) - 2\}$  by

When n = 4, we define the labeling as  $\phi(u_1) = 3$ ,  $\phi(u_2) = 7$ ,  $\phi(u_3) = 22$ ,  $\phi(u_4) = 21$ ,  $\phi(v_1) = 1$ ,  $\phi(v_2) = 12$ ,  $\phi(v_3) = 18$ ,  $\phi(v_4) = 13$ .

When n = 5, we define the labeling as  $\phi(u_1) = 3$ ,  $\phi(u_2) = 6$ ,  $\phi(u_3) = 28$ ,  $\phi(u_4) = 27$ ,  $\phi(u_5) = 13$ ,  $\phi(v_1) = 1$ ,  $\phi(v_2) = 15$ ,  $\phi(v_3) = 21$ ,  $\phi(v_4) = 19$ ,  $\phi(v_5) = 18$ , **Case i :** If *n* is odd,  $n \ge 7$ 

$$\begin{split} \phi(u_1) &= 3, \phi(u_2) = 13, \phi(u_i) = 28 + 12(i-3), 3 \le i \le \left\lceil \frac{n}{2} \right\rceil \cdot \phi\left(u_{\left\lceil \frac{n}{2} \right\rceil + 1}\right) = 6n - 3, \phi(u_n) = 7, \phi(u_{n-1}) = 21, \phi(u_{n-i}) = 37 + 12(i-2), 2 \le i \le \frac{n-5}{2}. \\ \phi(v_1) &= 1, \phi(v_2) = 18, \phi(v_i) = 24 + 12(i-3), 3 \le i \le \left\lceil \frac{n}{2} \right\rceil \cdot \phi\left(v_{\left\lceil \frac{n}{2} \right\rceil + 1}\right) = \begin{cases} 25 & n = 7\\ 6n - 23 & n \ge 9 \end{cases}, \phi(v_n) = 12, \phi(v_{n-1}) = 22, \phi(v_{n-2}) = 25, \phi(v_{n-i}) = 33 + 12(i-3), 3 \le i \le \frac{n-3}{2}. \end{split}$$

**Case ii :** If *n* is even,  $n \ge 6$  $\phi(u_1) = 3, \phi(u_2) = 7, \phi(u_3) = 24, \ \phi(u_i) = 34 + 12(i-4), 4 \le i \le \frac{n}{2} + 1 \cdot \phi\left(u_{\frac{n}{2}+2}\right) = 6n - 3, \phi(u_n) = 30, \ \phi(u_{n-i}) = 31 + 12(i-1), \ 1 \le i \le \frac{n-6}{2}.$ 

IJARSE ISSN (O) 2319 - 8354

# **International Journal of Advance Research in Science and Engineering** Vol. No.6, Issue No. 02, February 2017

## www.ijarse.com



 $\phi(v_1) = 1, \phi(v_2) = 6, \phi(v_3) = 10, \phi(v_4) = 18, \phi(v_i) = 42 + 12(i-5), \quad 5 \le i \le \frac{n}{2} + 1,$  $\phi\left(v_{\frac{n}{2}+2}\right) = \begin{cases} 15 & n=6\\ 27 & n=8\\ 6n-24 & n \ge 10 \end{cases}, \phi(v_n) = 12, \phi(v_{n-i}) = 15 + 12(i-1), \quad 1 \le i \le \frac{n-4}{2}.$ 

Then the induced edge labels of G are 1, 4, ..., 2n - 2. Hence  $\phi$  is one modulo three geometric mean labeling of G.

### REFERENCES

- [1]. F.Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
- [2]. A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2016). #DS6,
- [3]. S. Somasundaram and R. Ponraj, "Mean labelings of graphs", National academy Science letters, 26 (2003), 210-213.
- [4]. P.Jeyanthi and A.Maheswari, One Modulo Three Mean Labeling of Graphs ,American Journal of Applied Mathematics and Statistics,Vol 2(2014),No.5, 302-306.
- [5]. S. Somasundaram, P.Vidhyarani and R. Ponraj, "Geometric Mean Labelings of Graphs", Bulletin of Pure and Applied Sciences, 30E (2011), 153-160.
- [6]. P.Jeyanthi and A.Maheswari, P. Pandiaraj One Modulo Three Geometric Mean Labeling of Graphs (Preprint).