
 

488 | P a g e  
 

CONDUCTING AND ANALYZING THE DESIGN 

PATTERNS OF LIBRARY MANAGEMENT SYSTEM 

WITH ITS FACTORY DESIGN 

Teoh Wan Qi 

Student, BSc (Hons) in Software Engineering, Asia Pacific University, Kuala Lumpur, Malaysia 

 

ABSTRACT 

Here, the Factory pattern and the Singleton pattern is implemented in this assignment after conducting analysis 

on different design patterns. Factory pattern is chosen because it is the most commonly used in the Java 

programming and it is more easily to be understand by the developer; whereas Singleton is use because it is the 

simplest pattern in the overall types of design pattern. Moreover, these patterns are also the solution to solve the 

issue found from the class diagram. 

 

Keywords: Analysis, Design Pattern, Implementation, Java, Singleton 

 

I. INTRODUCTION  

 

The library management system involves different function such as managing book transactions and creating 

user. It will also require search function to enable the user to find their desire resource in the library. Hence, the 

design pattern of the system is important, as it not only help in managing the arrangement of code, but it also 

helps in managing the memory allocation of the code. Different design pattern can be used in different cases, 

where not all the design patterns are suitable for the library management system. In the library management 

system, it is found that the overall class diagram shown in “Fig.1” is quite complex and inflexible as some of the 

methods used in it can be modified by an implementation of design patterns. In this assignment, we will be 

implementing 2 design patterns into the system so to modify the current class diagram to a better approach. 

1.1 Existing System Issues 

Instance in the user class need to be access globally while being encapsulated because it is needed to be access 

frequently by the user class in order to check whether the user already exist in the system. Multiple object 

needed to be create, as there is different type of books with the same property but different attributes, such as 

Magazine and Journal. The code is coupled therefore it is not flexible if any changes needed to be made in the 

Book class 

 

II. IDENTIFYING PATTERN 

Identifying pattern is the process for solving the real problems based on factory pattern and singleton pattern. 

The modified class diagram shown in “Fig.2”. 

 



 

489 | P a g e  
 

 

Figure 1. Class diagram 

Figure.2 Modified Class diagram 

III. SOLUTIONS WITH REFINED CLASS DIAGRAM 

 

First, the book class is modified to become an abstract class and a set and get method is written in the class for 

every instance declared. A function named displayBookDetail() is declared in the book class as well for the 

factory class to access. Then, other subclasses such as magazine, journal and textbook class is inheriting to it. 

Next, a factory class named “BookFactory” is created and a method named retrieveBook with a String 

parameter is declared. Therefore, whenever the librarian class need to obtain the information from the book 

class, it needs to request from the factory class first. The “Fig.3” shown refined class digram.  



 

490 | P a g e  
 

 

Figure.3 Refined class diagram 

3.1 Justification  

The factory pattern one of the pattern that is frequently used in Java programming. It is categorize as creational 

pattern as the pattern involving in creating objects. The factory pattern creates object without exposing the 

creation logic to the user and it will also refer to the new created object using interface [1]. The factory pattern is 

used in the book class because multiple classes such as magazine, journal and textbook need to be created and 

also to prevent the code for calling the method in the subclasses to be written everywhere in the different classes 

repeatly [2]. 

IV. SINGLETON PATTERN 

4.1 Solution 

First, a class named “Database” is created with a getID() and a private constructor. When the class was first 

accessed, an object will be created and stored inside its identifier. Hence, if the object is frequently accessed, 

new object will not be created, while the identifier will return the object that is created during the first 

invocation.  

4.2 Refined Class Diagram 

The following refined class diagram shown the user attributes and database shown in “Fig.4”. 

 



 

491 | P a g e  
 

 

Figure.4 Refined Class diagram 

 

4.3 Justification 

In Java, Singleton is considered as one of the easiest pattern to be implemented into the code. This is also a 

creational pattern as it also involves in creating object. This pattern is used when there is one instance that is 

needed to be easily access frequently. The pattern of the singleton involves in creating object where only one 

object is created and provide a way to access the object without instantiate the object of the class [2]. In this 

scenario, 3 instances with String type which are stuID, lecID and staffID is created to enable the User class to 

check whether these ID are present in the system database so that no duplicate information will be create in the 

database. 

 

V. SINGLETON PATTERN IN MAIN CLASS 

 

 

 



 

492 | P a g e  
 

5.1 Output for Singleton Pattern 

 

 

 

 

 

 

Comparison are made to show that whether or not the IDs exist in the system 

 

VI. FACTORY PATTERN IN MAIN CLASS 

 

 

 

 

 

 



 

493 | P a g e  
 

6.1 Output for the Factory pattern 

 

 

 

 

 

 

 

System enable user input the type of the book that he/she wants and the system will display all the information 

of that particular book type. 

 

VII. ACKNOWLEDGMENT 

Author would like to acknowledge Mr Umapathy Eaganathan, Faculty in Computing, Asia Pacific University, 

Malaysia for his constant support and encouragement to contribute in this International conference also for the 

publishing.  

 

VIII. CONCLUSION 

This paper explained and created a design pattern for library management system with different solutions 

provided with factory design and also provided with java codes.  

 

REFERENCES 

 

[1] www.tutorialspoint.com. (2016). Design Pattern Factory Pattern. [online] Available at: 

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm [Accessed 25 Sep. 2016]. 

[2] Programmers.stackexchange.com. (2016). Why should I use a factory class instead of direct object 

construction?. [online] Available at: http://programmers.stackexchange.com/questions/253254/why-should-

i-use-a-factory-class-instead-of-direct-object-construction [Accessed 26 Sep. 2016]. 

 


