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ABSTRACT 

The present investigation deals with the deformation in micropolar generalized thermoelastic medium with mass 

diffusion subjected to thermo mechanical loading due to thermal laser pulse. Laplace and Fourier transform 

technique is used to solve the problem. Concentrated normal force and thermal source are taken to illustrate the 

utility of approach. The closed form expressions of normal stress, tangential stress, tangential couple stress, 

mass concentration and temperature distribution are obtained in the transformed domain.  
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I. INTRODUCTION 

Micropolar theory of elasticity was introduced by Eringen [1]. This theory incorporates the local deformation 

and rotation of the material points of the composite. This theory provides a model that can support body couples 

and surface couples and exhibits a high frequency optical wave spectrum. Eringen [2, 3], Maugin and Mild [4], 

Nowacki [5] developed the linear theory of micropolar thermoelasticity by excluding the micropolar theory of 

elasticity to include the thermal effects. Touchert et al. [6] derived the basic equations of linear theory of 

micropolar coupled thermoelasticity. However, there is a certain degree of coupling with temperature and 

temperature gradients as temperature speeds up the diffusion process. Nowacki [7, 10] developed the theory of 

thermoelastic diffusion by using coupled thermoelastic model. Dudziak and Kowalski [11] and Olesiak and 

Pyryev [12], respectively, discussed the theory of thermo diffusion and coupled quasi stationary problems of 

thermal diffusion for an elastic layer. Rapidly oscillating contraction and expansion generates temperature 

changes in materials susceptible to diffusion of heat by conduction [13]. This mechanism has attracted 

considerable attention due to the extensive use of pulsed laser technologies in material processing and non-

destructive testing and characterization [14, 15]. The so-called ultra-short lasers are those with pulse durations 

ranging from nanoseconds to femto seconds. In the case of ultra-short pulsed laser heating, the high intensity 

energy flux and ultra-short duration lead to a very large thermal gradients or ultra-high heating may exist at the 

boundaries. In such cases, as pointed out by many investigators, the classical Fourier model, which leads to an 
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infinite propagation speed of the thermal energy, is no longer valid [16]. Researchers have proposed several 

models to describe the mechanism of heat conduction during short-pulse laser heating, such as the parabolic 

one-step model [17], the hyperbolic one-step model [18], and the parabolic two-step and hyperbolic two-step 

models [19, 20].Dubois [21] experimentally demonstrated that penetration depth play a very important role in 

the laser-ultrasound generation process. Ezzat et al. [22] discussed the thermo-elastic behavior in metal films by 

fractional ultrafast laser. Al-Huniti and Al-Nimr [23] investigated the thermoelastic behavior of a composite slab 

under a rapid dual-phase lag heating. The comparison of one-dimensional and two-dimensional axisymmetric 

approaches to the thermo mechanical response caused by ultrashort laser heating was studied by Chen et al. 

[24].Kim et al.[25] studied thermoelastic stresses in a bonded layer due to pulsed laser radiation. Thermoelastic 

material response due to laser pulse heating in context of four theorems of thermoelasticity was discussed by 

Youssef and Al-Bary [26],Theoretical study of the effect of enamel parameters on laser induced surface acoustic 

waves in human incisor was studied by Yuan et al [27].A two- dimensional generalized thermoelastic diffusion 

problem for a thick plate under the effect of laser pulse thermal heating was studied by Elhagary [28].Othman et 

al. [29]studied the influence of thermal loading due to laser pulse on generalized micropolar thermoelastic solid 

with comparison of different theories.  

 

II. PROBLEM FORMULATION 

Following Eringen [3] and Al-Qahtani and Datta [30] the basic equations for homogeneous, isotropic micropolar 

generalized thermoelastic solid with mass diffusion in the absence of body forces and body couples are given 

by: 

,(1) 

,(2) 

,                             (3)       

,                               (4)                                           

,           (5) 

,                                                                                     ( 6)  

The plate surface is illuminated by laser pulse given by the heat input 

 

(7) 

 

where  is the energy absorbed. The temporal profile  is represented as, 
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(8) 

Here  is the pulse rise time. The pulse is also assumed to have a Gaussian spatial profile in  

            (9) 

where  is the beam radius, and as a function of the depth  the heat deposition dueto the laser pulse is assumed 

to decay exponentially within the solid, 

 

(10) 

 

Equation (7) with the aid of (8,9 and 10) takes the form 

   ,                 (11)   

We consider plane strain problem with all the field variables depending on . For two dimensional 

problems, we take  

 

, ,        (12) 

For further consideration, it is convenient to introduce in equations (1.1)-(1.4) the dimensionless quantities 

defined as: 

    ,      (13) 

 

Making use of (13) in (1)-(4) and with the aid of (12), we obtain: 

 

                                                                                                                                           (14) 

                                                                                                                                                                                         (15) 

                 (16) 

                                                                                                                                                           (17) 

                                                                                                                                                  (18)                                                              

The displacement components  and  are related to the non- dimensional potential functions  and  as: 

  ,                                                                                                                    (19)                   

Substituting the values of  from (19) in (14)-(18) and with the aid of (12), we obtain:  
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,(20) 

,   (21)                 

,           (22)     

,         (23)  

,          (24) 

 

III. SOLUTION OF THE PROBLEM 

We define Laplace transform and Fourier transform respectively as:  

    (25)        

           (26)   

Applying Laplace transform defined by (25) on (20)-(24) and then applying Fourier transforms defined by (26) 

on the resulting quantities and eliminating  ,  ,  and  respectively from the resulting equations, we 

obtain: 

              (27) 

             (28) 

             (29) 

 ,                  (30) 

The solutions of the equations (27)-(30) satisfying the radiation conditions that  as  

are given by: 

       (31) 

      (32)                           

         (33)                                  

          (34) 

         (35)                     

 

IV. BOUNDARY CONDITIONS 

We consider concentrated normal force and concentrated thermal source at the boundary surface , 

mathematically, these can be written as: 

 

, , , 

 ,                                                                                     (36)  

  

 Also  
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                                                                                                          (37) 

Substituting the values of  from the equations (31)-(35) in the boundary condition (36) and using (5)-(11), 

(12)-(13), (25)-(26) and solving the resulting equations, we obtain: 

,             (38) 

,             (39)  

,                                      (40) 

                                                             (41) 

                        (42) 

 

V. SPECIAL CASE 

Micropolar Thermoelastic Solid: In absence of mass diffusion effect in Equations (38) - (42), we obtain the corresponding 

expressions of stresses, displacements and temperature for micropolar generalized thermoelastic half space. 

5.1 Inversion of the transforms 

The transformed displacements, stresses and temperature changes are functions of the parameters of Laplace and Fourier 

transforms  and respectively and hence these are of the form  . To obtain the solution of the problem in the 

physical domain, we must invert the Laplace and Fourier transform by using the method applied .  

 

VI. DISCUSSIONS 

The analysis is conducted for a magnesium crystal-like material.  

6.1 Linearly distributed normal force 

The variation of normal stress  with the distance . It is noticed that for MPMDT1 and MPMDT2,  show similar 

behavior. The value of normal stress monotonically increases as  and then oscillates. The value of   increases near the 

application of the normal force due to the mass diffusion effect and then remain oscillating for all values of . 

The variation of tangential stress  with the distance . It is noticed that initially the behavior of  for MPMDT1 and 

MPT1 show variable trend but for MPMDT1, MPMDT2 and MPT1, MPT2 exhibits similar behavior.  Initially decrease 

monotonically for all the cases. The variation in tangential stress in micropolar thermoelastic is more than that of micropolar 

thermoelastic with mass diffusion. 

 

VII. CONCLUSIONS 

The problem consists of investigating displacement components, scalar mass concentration, temperature distribution and 

stress components in a homogeneous isotropic micropolar mass diffusion thermoelastic half space due to various sources 

subjected to laser pulse. Integral transform technique is employed to express the results mathematically. Theoretically 

obtained field variables are also exemplified through a specific model to present the results in the transformed domain. 
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