

394 | P a g e

AN EFFICIENT BER USING SECURE TURBO

ENCODER

Dr.G.A.E.Satish Kumar
1
, Dr.M.Sushanth Babu

2
, M.Rajani

3

1,2
 Professor,

3
Assistant Professor Department of Electronics & Communication Engineering,

Vardhaman, College of Engineering, Shamshabad- Hyderabad, (India)

ABSTRACT

Providing security to encoder using pruning function which is controlled by a key. It helps in providing

reliability and security from an eavesdropper. When two legitimate users communicate the message can receive

by end user across a noisy channel. A secure channel encoder based on turbo codes is presented by using both

techniques they are puncturing and trellis pruning. Puncturing is employed to downgrade the performance of

the code and thus increase the error probability experienced by an eavesdropper at a given signal to noise ratio.

Here decoder performance a major role using three different decoding techniques. Each decoding technique has

its own significance, has the number of iteration increases performance of bit error rate becomes more efficient.

Keywords: Pruning Function, Puncturing, Interleaver, Bit Error Rate, Iterations

I INTRODUCTION

A secure encoder provides not only reliability but also security. This can be achieved by keeping secret suitable

parameters of the encoding process. Trellis pruning is a technique where state transitions are removed. It has

been used for constructing variable rate codes and increasing the reliability among cooperating users. In

legitimate users employ secret pruning to encode their data using a part of mother trellis which is unknown to

eavesdropper.

Turbo coding was proposed in 1993 which it reported excellent coding gain results, approaching shanonian

predictions. The message bits are encoded twice, an interleaver is used in between two encoder components so

that the result obtained at each should be different from one another. Recursive Systematic Convolutional (RSC)

encoders are used, with each RSC encoder producing a systematic output which is equivalent to the message

bits, as well as a stream of parity bits. The two parity sequences can then be punctured before being transmitted

along with the message bits to the decoder. This puncturing of the parity bits allows a wide range of coding rates

to be realized, and often half the parity bits from each encoder is sent.

Secret pruning was introduced as a means of selecting a secret sub code, to be used by legitimate users. Even

though sub code has better performance this method cannot guarantee that an eavesdropper will experience high

bit error rate after decoding the message bit. We provide security to encoder and better performance using three

different decoding techniques. It mainly concentrates on time elapsed for each iteration and efficient bit error

rate. As the number iterations increases while decoding correction of errors improves a lot but when number of

395 | P a g e

iterations increases time taken by each iteration would increase it will reduce the speed of iteration. Considering

the speed, taking care of number of iterations and complexity of algorithms has to be taken into consideration.

Adaptive schemes based on turbo codes, which constitute convolutional encoders are randomly punctured to

produce codes of higher rate. Secret trellis pruning which increases performance allows legitimate users to

experience a high bit error rate at the eavesdropper and low bit error rate at legitimate users.

The rest of paper is organized as follows. In section II we present the secure turbo encoder design. In section III

the Turbo decoder is presented, and Simulations and comparison of different techniques with respect to

performance will be discussed in section IV. Section V provides the conclusion.

II SECURE TURBO ENCODER

The general structure used for secure turbo encoder provides similar results as normal encoder a part from

providing extra security by adding pruning function which is controlled by a key “k”. Furthermore, it is also

possible to employ more than two component codes. we concentrate on the standard turbo encoder structure

using two RSC codes. The message bits “u” passed through encoder and interleaver, an element known as

pruning function “f” providing at two encoder component ends. The two pruning functions are controlled by a

key “k” which it helps to communicate between legitimate users without any involvement of third party. The

outputs from the two encoders are then punctured “p” and multiplexed and resultant is represented as “v”.

Usually both component encoders are RSC codes, giving one parity bit and one systematic bit output for every

input bit. Then to give an overall coding rate of one half, half the output bits from the two encoders must be

punctured. The arrangement that is often favored and that we have used in our work is to transmit all the

systematic bits from the first RSC encoder, and half the parity bits from each encoder. Note that the systematic

bits are rarely punctured, since this reduces the performance of the code than puncturing the parity bits. Two

component codes are used to code the same input bits, but an interleaver is placed between the encoders.

Generally Recursive Systematic Convolutional (RSC) codes are used as the component codes, but the

improvement in performance that turbo codes gave arose because of the interleaver used between the encoders,

and because recursive codes were used as the component codes. It appears that turbo codes can be thought of as

having a performance gain proportional to the interleaver length used. However, the decoding complexity per bit

does not depend on the interleaver length. Therefore, extremely good performance can be achieved with

reasonable complexity by using very long interleavers. However, for many important applications, such as

speech transmission, extremely long frame lengths are not practical because of the delays they result in.

Fig:1 Secure Turbo Encoder

396 | P a g e

A. The Puncturing Step

Let e i  be the SNR at the eavesdropper. The consistent convolution code is punctured to guarantee that bit

error rate evep at eavesdropper, after decoding with the full mother trellis, is greater than equal to δ the value of

pur that guarantees that the transfer function of randomly punctured convolutional code at SNR i .A graph is

drawn between AI and EI the quality of the extrinsic LLRs is measured by the mutual information EI

between them and information bits. Let AI be the mutual information between the a priori LLRs and

information bits. If two curves intersect only at the point AI = EI =1, then the iterative decoder converges to low

probability of error. Blue line in the graph represents mother code which it made to touch at 1 it shows the

message bits transmitted are received without any lose of information through all these process.

Fig:2. Randomly Punctured mother turbo code and obtains source bits without losing

B. The Pruning Step

In the previous step, puncturing was employed to increase the bit error rate at the eavesdropper. Assuming that

puncturing has also increased the legitimate BER to unacceptable level. The pruning is applied in a secret

manner to upgrade reliability. The two corresponding points intersect only at one point (1, 1). Assuming that

eavesdropper’s and legitimate SNR will be known at transmitter. It shows the information didn’t lose during the

encoding and decoding process. It provides suitable parameters to represent the message bits passed through the

encoder where all these are passed systematically through AWGN channel which it would be connected to a

decoder. Representing a decoder with different techniques to perform efficient BER when passed through noise

channel.

397 | P a g e

Fig: 3. Randomly Punctured and pruned mother turbo code meets at a point

III TURBO DECODER

The structure of an iterative turbo decoder is shown in Fig. Two component decoders are connected by

interleavers in a structure which reflects to that of the encoder. Each decoder takes three inputs the

systematically encoded channel output bits, the parity bits transmitted from the associated component encoder,

and the information from the other component decoder about the likely values of the bits concerned. This

information from the other decoder is referred to as a priori information. The component decoders have to

transmit both the inputs from the channel and this a-priori information. They must also provide what are known

as soft outputs for the decoded bits. The outputs resulted at each decoder are typically represented in terms of

the so-called Log Likelihood Ratios (LLRs), the magnitude of which gives the sign of the bit, and the amplitude

the probability of a correct decision. Two suitable decoders are the Threshold Max Log MAP and the Maximum

A-Posteriori (MAP) algorithm.

Fig:4 Turbo Iterative Decoder

The decoder operates iteratively, and in the first iteration the first component decoder takes channel output

values only, and produces output as estimated data bits. The output from the first encoder is then used as

398 | P a g e

additional information for the second decoder, which uses this information along with the channel outputs to

calculate its estimate of the data bits. Now the second iteration can begin, and the first decoder decodes the

channel outputs again, but now with additional information about the input bits provided by the output of the

second decoder in the first iteration. This additional information allows the first decoder to obtain a more

accurate set of outputs, which are then used by the second decoder as a-priori information. This cycle is

repeated, and with every iteration the Bit Error Rate (BER) of the decoded bits tends to fall. However the

improvement in performance shows with increasing numbers of iterations decreases as the number of iterations

increases.

Due to the interleaving used at the encoder, care must be taken to properly interleave and de-interleave the LLRs

which are used to represent the soft values of the bits. Furthermore, because of the iterative nature of the

decoding, precaution has to be taken so that same number of bits is not to be used once again at each decoding

step. For this reason, the concept of so called extrinsic and intrinsic information was used for iterative decoding

of turbo codes. Here we represent three algorithms they are

A.The Maximum A-Posteriori Algorithm

Maximum A-Posteriori (MAP) algorithm was proposed by Bahl, Cocke, Jelinek and Raviv (BCJR) for

estimating the a-posteriori probabilities of the states and the transitions of source observed, when subjected to

memory less noise. This algorithm has also become known as the BCJR algorithm, named after its inventors.

When employed for decoding convolutional codes, the algorithm is optimal in terms of minimizing the decoded

bit error rate, unlike the Threshold Max Log MAP algorithm, which minimizes the probability of an incorrect

path through the trellis being selected by the decoder. Thus Threshold Max Log MAP algorithm can be thought

of as minimizing the number of groups of bits associated with these trellis paths, rather than the actual number

of bits, which are decoded incorrectly. However, the MAP algorithm examines every possible path through the

convolutional decoder trellis and therefore initially seemed to be unfeasibly complex for application in most

systems. Hence it was not widely used before the discovery of turbo codes. However, the MAP algorithm

provides not only the estimated bit sequence, but also the probabilities for each bit that it has been decoded

correctly. This is essential for the iterative decoding of turbo codes and so MAP decoding was used. Since then

much work has been done to reduce the complexity of the MAP algorithm to a reasonable level. We use Bayel’s

rule which gives the joint probability of a and b, P(a^b), in terms of conditional probability of “a” given “b” as

     .p a b p a b p b 

The MAP algorithm gives, for each decoded bit ()kL u , the probability that this bit was +1 or - 1, given the

received symbol sequence y. As this is equivalent to finding the a-posteriori LLR ()ku
L

y
 , where

 
 

1

() ln
1

k
k

k

p u
yu

L
y p u y

 
 

  
  

 

399 | P a g e

 

 

1
() ln

1

kk

k

p u yu
L

y p u y

   
      

Let us now consider the transitions possible for the K = 3 RSC code shown in Fig, which we have used for the

component codes in most of our work. For this K = 3 code there are four states, and as it is a binary code for

each state two transitions are possible one if the input bit is -1 (shown as a solid line), and one if the input bit is

a +1 (shown as a dashed line). It can be seen from Fig that if the previous state Sk-1 and the present state Sk are

known, then the value of the input bit uk, which caused the transition between these two states, will be known.

Hence the probability that uk = +1 is equal to the probability that the transition from the previous state Sk-1 to the

present state Sk is one of the set of four possible transitions that can occur when uk = +1 (ie those transitions

shown with dashed lines). This set of transitions are mutually exclusive (ie only one of them could have

occurred at the encoder), and so the probability that any one of them occurs is equal to the sum of their

individual probabilities.

Sk-1 Sk
-1

-1

-1

-1

+1

+1

+1

+1

Fig:5. Possible Transitions in k=3 RSC Component Code

Fig:6. MAP Decoder Trellis for k=3 RSC Code

400 | P a g e

 
 

 
 

1

', 1

1

', 1

'

() ln
'

k

k

k k

s s u
k

k k

s s u

p s s s s y
u

L
y p s s s s y



 



 

    
 

  
   

 
 





Where  ', 1ks s u  is the set of transitions from the previous state 1 'ks s  to the present state ks s that

can occur if the input bit 1
k

u   and similarly for  ', 1ks s u  . For brevity we shall write

 1 'k kp s s s s y     as  'p s s y  .

We know consider individual probabilities  'p s s y  from above equation. The received sequence can

spited into three states as received codeword associated with the present transition ky , the received sequence

prior to the present transition
j ky 

and received sequence after the present transition
j ky 

.We can write for

individual probabilities  'p s s y 

    ' ' j k k j kp s s y p s s y y y       

 Memoryless, then the future received sequence
j ky 

 will depend only on the present state s and not on the

previous state 's or the present and previous received channel sequences ky and, j ky  we can write

      ' | ' 'j k j k k j k kp s s y p y s s y y p s s y y          

Again, using Bayes’ rule and the assumption that the channel is memoryless, we can expand as

     ' | . 'j k j k kp s s y p y s p s s y y      

        

      
     1

| . | ' . '

| . | ' . '

. ', . '

j k k j k j k

j k k j k

k k k

p y s p y s s y p s y

p y s p y s s p s y

s s s s  

  

 



   

  



Where

   1 1' 'k k j ks p s s y     

is the probability that the trellis is in state 's at time k-1 and the received channel sequence up to this point

is j ky  , as visualized

   |k j k ks p y s s  

401 | P a g e

is the probability that given the trellis is in state s at time k the future received channel sequence will be
j ky 

,

and lastly

    1', | 'k k k ks s p y s s s s    

is the probability that given the trellis was in state 's at time k-1 , it moves to state s and the received channel

sequence for this transition is ky .

a-priori The a-priori information about a bit is information known before decoding starts, from a source other

than the received sequence or the code constraints. It is also some- times referred to as intrinsic information to

contrast with the extrinsic information described next.

extrinsic The extrinsic information about a bit ku is the information provided by a decoder based on the

received sequence and on a-priori information excluding the received systematic bit ky and the a-priori

information L(ku) for the bit ku . Typically, the component decoder provides this information using the

constraints imposed on the transmitted sequence by the code used. It processes the received bits and a-priori

information surrounding the systematic bit ku , and uses this information and the code constraints to provide

information about the value of the bit ku

a-posteriori The a-posteriori information about a bit is the information that the decoder gives taking into

account all available sources of information about uk. It is the a-posteriori LLR, ie L(ku |y) , that the MAP

algorithm gives as its output.

B. Maxlog Log Map Algorithm

Max-Log-MAP algorithm was proposed by Koch, Baier and Erfanian. This technique reduced the complexity of

Log MAP algorithm by redesigning the maximum values are taken into consideration. The performance is

optimal compared to that of the MAP algorithm. The MAP algorithm calculates the a-posteriori LLRs L(ku
y

)

it requires the following values:

1) The 1(')k s  values, which are calculated in a forward recursive manner

2) The  k s

 values, which are calculated in a backward recursion and

3) the branch transition probabilities (',)k s s

The Max-Log-MAP algorithm simplifies this by transferring these equations into the log arithmetic domain and

then using the approximation

402 | P a g e

 ln maxix

i
i

i

e x
 

 
 


Where  max i
i

x means the maximum value of ix . Then, with  kA s ,  k s and  k s defined as follows

 

 

 

 

1

'

1

'

1

ln(())

ln(())

ln((',))

ln(())

ln (') (',)

ln exp[(') (',)]

max((') (',)

k k

k k

k k

k k

k k

s

k k

s

k k

A s s

s s

s s s

A s s

s s s

A s s s

A s s s



 

 



 

















 
  

 

 
  

 

 







This implies that for each path in the previous stage in the trellis to the state Sk= s at the present stage, the

algorithm adds a branch metric term (',)k s s to the previous value 1((')kA s to find a new value  kA s

for that path. The new value of  kA s according to the maximum of the  kA s values of the various paths

reaching the state Sk=s. This can be thought of as selecting one path as the “survivor” and discarding any other

paths reaching the state. Finally we write for the a posteriori LLRs ()ku
L

y
 which calculates as

  

  

 1

1

(',) 1

1

(',) 1

1

(',) 1

1

(',) 1

1
',

('). (',). ()

() ln
('). (',). ()

exp (') (',)

() ln

exp (') (',)

max (') (





















 
 

  
 
 

 
   

 
 

   
 

  









k

k k

s sk

k k

s s

k k k

s s
k

k k k

s s

k k
s s u

s s s k s
u

L
y s s s k s

A s s s B s
u

L
y

A s s s B s

A s

  

  

  

 
  

1

1
',

',) (

max (') (',) (





 

 
k

k

k k k
s s u

s s B s

A s s s B s

This means that in the Max-Log-MAP algorithm for each bit ku the a-posteriori LLR ()ku
L

y
is calculated by

considering every transition from the trellis stage Sk-1 to the stage Sk These transitions are mixed into those that

might have occurred if uk = +1, and those that might Have occurred if uk = -1. For both of these groups the

transition giving the maximum value of  1(') (',)k k kA s s s B s   is found, and the a-posteriori LLR is

403 | P a g e

calculated based on only these two best transitions. For a binary trellis there will be 2 .2
k-1

transitions at each

stage of the trellis, where K is the constraint length of the convolutional code. Therefore, there will be 2
k-1

transitions to consider the maximization.

C. Threshold Max Log Map

In this section Threshold Max Log MAP is also known as Viterbi algorithm, referred to as the Soft Output

Viterbi Algorithm (SOVA). This algorithm has two modifications over the classical Viterbi algorithm which

allows it to be used as a component decoder for turbo codes. Firstly, the path metrics used are modified to take

account of a-priori information when selecting the maximum likelihood path through the trellis. Secondly the

algorithm is modified so that provides a soft output in the form of the a-posteriori LLR L(ku
y

) for each

decoded bit. The first modifications is easily accomplished. Consider the state sequence
s

ks which gives the

states along the surviving path at state Sk = s at stage k, in the trellis. The probability that this is the correct path

through the trellis is given by

 
 
 

|

s

k j ks

k j k

j k

p s y
p s y

p y










As the probability of the received sequence
j ky 

 for transitions and including the k’th transition is constant for

all paths sk through the trellis to stage k, the probability that the path
s

ks is the correct one is proportional to

 |s

k j kp s y 
. Therefore our metric should be defined so that maximising the metric will

maximize  |s

k j kp s y 
. The metric should also be easily computable in a recursive manner as we go from the

(k-1)’th stage in the trellis to the k’th stage. Then, assuming a Memoryless channel, we will have

     '

1 1 1| . | 's s

k j k k j k k k kp s y p s y p s s y s s        

    
    

      

      

'

1 1

'

1

1

ln |

ln | '

ln ',

1
ˆln ', ',

2 2

s s

k k j k

s

k k k k

s s

k k k

n
c

k k k kl kl

l

M s p s y

M s p s s y s s

M s M s s s

L
s s s s c L u y x







 





    

 

     



Hence our metric in the algorithm is updated as in the Viterbi algorithm, with the additional uk  kL u term

included so that the a-priori information available is taken into account. Notice that this is equivalent to the

forward recursion to calculate Ak(s) in the Max-Log-MAP algorithm.

404 | P a g e

IV TURBO CODED BPSK PERFORMANCE OVER GAUSSIAN CHANNELS

We present turbo codes using Binary Phase Shift Keying (BPSK) over Additive White Gaussian Noise

(AWGN) channels. There are many parameters, which affect the performance of turbo codes. Some of these

parameters are:

1) The component decoding algorithm used.

2) The number of decoding iterations used.

3) The frame-length or latency of the input data.

4) The specific design of the interleaver used.

5) The generator polynomials and constraint lengths of the component codes.

The turbo encoder uses two component Recursive Convolutional Codes (RSCs) in parallel. Our standard RSC

component codes are K = 3 codes with generator polynomials G0= 7 and G1 = 5 in octal representation. These

generator polynomials are optimum in terms of maximising the minimum free distance of the codes. The

standard interleaver used between the two component RSC codes is a 1000 bit random interleaver. Unless

otherwise stated, the results of this section are valid for half-rate codes, where half the parity bits generated by

each of the two component RSC codes are punctured.

V RESULTS

While comparing three algorithms Bit Error Rate (BER) varies shows the performance of an algorithm. There

was similar results shown by Max Log Map and Threshold Max Log Map but fading effect on Max Log Map

was more than the Threshold Max Log. Where fading effect reduces the strength of the message signal.

Threshold Max Log gives best results when compared with other two algorithms. The comparison is also done

while calculating the speed of algorithms time consumed by each algorithm for each iteration are compared in a

tabular column.

TABLE I. COMPARISON OF THE ALGORITHMS FOR ITERATION 1

ALGORITHMS
MAX

Eb/N0

BER
STEP

SIZE

LOG MAP 2.5 10
-2

0.5

MAX LOG MAP 2.5 10
-2

 0.5

THRESHOLD

MAX LOG MAP
2.5 10

-4
 0.5

405 | P a g e

Fig: 7. Turbo decoder performance for iteration 1

TABLE II. COMPARISON OF THE ALGORITHMS FOR ITERATION 2

ALGORITHMS
MAX

Eb/N0

BER
STEP

SIZE

LOG MAP 2.5 10
-1

0.5

MAX LOG MAP 2.5 10
-3

 0.5

THRESHOLD

MAX LOG MAP
2.5 10

-3
 0.5

Fig: 8. Turbo decoder performance for iteration 2

406 | P a g e

TABLE III. COMPARISON OF THE ALGORITHMS FOR ITERATION 3

ALGORITHMS
MAX

Eb/N0

BER
STEP

SIZE

LOG MAP 2.5 10
-2

0.5

MAX LOG MAP 2.5 10
-1

 0.5

THRESHOLD

MAX LOG MAP
2.5 10

-4
 0.5

Fig: 9. Turbo decoder performance for iteration 3

TABLE IV. COMPARISON OF THE ALGORITHMS FOR ITERATION 4

ALGORITHMS
MAX

Eb/N0

BER
STEP

SIZE

LOG MAP 2.5 10
-3

0.5

MAX LOG MAP 2.5 10
-3

 0.5

THRESHOLD

MAX LOG MAP
2.5 10

-4
 0.5

Fig: 10. Turbo decoder performance for iteration 4

407 | P a g e

D. Comparing Speed Parameters

Considering few parameters same through all the algorithms to compare among three algorithms they are

Test length=10s

Cutting length=1024

Iteration=1

TABLE V. COMPARING SPEED PARAMETERS OF ALL ALGORITHMS

Algorithm
Computing

Frames

Computing

Bit Number

Computing

Bit Rate

LOG MAP 188 192512 1.93e+04

MAX LOG

MAP
162 165888 1.66e+04

THRESHOLD

MAX LOG

MAP

128 131072 1.31e+04

Test length=10s

Cutting length=1024

Iteration=2

TABLE VI. COMPARING SPEED PARAMETERS OF ALL ALGORITHMS

Algorithm
Computing

Frames

Computing

Bit Number

Computing

Bit Rate

LOG MAP 109 111616 1.12e+04

MAX LOG

MAP
92 94208 9.42e+03

THRESHOLD

MAX LOG

MAP

72 73728 7.37e+03

Test length=10s

Cutting length=1024

Iteration=3

408 | P a g e

TABLE VII. COMPARING SPEED PARAMETERS OF ALL ALGORITHMS

Algorithm
Computing

Frames

Computing

Bit Number

Computing

Bit Rate

LOG MAP 76 77824 7.373e+03

MAX LOG

MAP
63 64512 6.45e+03

THRESHOLD

MAX LOG

MAP

48 49152 4.92e+03

Test length=10s

Cutting length=1024

Iteration=4

TABLE VIII. COMPARING SPEED PARAMETERS OF ALL ALGORITHMS

Algorithm
Computing

Frames

Computing

Bit Number

Computing

Bit Rate

LOG MAP 46 47104 4.71e+03

MAX LOG

MAP
40 40960 4.10e+03

THRESHOLD

MAX LOG

MAP

31 31744 3.17e+03

VI CONCLUSION

Although it is possible to optimally decode turbo codes in a single non-iterative step, for complexity reasons a

non-optimum iterative decoder is almost always preferred. Such an iterative decoder employs two component

soft-in soft-out decoders, and we have described the MAP, Log-MAP, Max-Log-MAP and SOVA algorithms,

which can all be used as the component decoders. The MAP algorithm is optimal for this task, but it is

extremely complex. The Log-MAP algorithm is a simplification of the MAP algorithm, and offers the same

optimal performance with a reasonable complexity. The other two algorithms, the Max-Log-MAP and the

SOVA, are both less complex again, but give a slightly degraded performance.

409 | P a g e

We have characterized the performance of turbo coding scheme using BPSK modulation constellations, when

communicating over AWGN channel. As expected, the turbo codes have been shown to perform significantly

better than convolutional codes. We have demonstrated the effects of the various decoding algorithms, the

constraint length and generator polynomials of the constituent codes, as well as the influence of the transmission

frame length on the achievable performance. For long frame length systems random interleavers perform better

than block interleavers, but for shorter frame length systems, such as those that might be used for speech

transmission, block interleavers perform better. We provided performance results obtained, when using turbo

codes in conjunction with BPSK for transmission channel.

REFERENCES

[1] Alexandra’s Katsiotis, Nicholas Kolokotronis, Nicholas Kalouptsidis Secure Encoder Designs Based on

Turbo Codes, IEEE Transactions on Communications, pp. 43154320, 2015.

[2] A. Payandeh, M. Ahmadian, and M. Aref, Adaptive secure channel coding based on punctured turbo codes,

IEE Commun. Proc., vol. 153, pp. 313316, 2006.

[3] D. Abbasi-Moghadam and V. Vakili, Enhanced secure error correction code schemes in time reversal UWB

systems, Wireless Personal Communications, vol. 64, pp. 403423, Springer, 2012.

[4] M. Esmaeili, M. Dakhilalian, and T. Gulliver, New secure channel codingscheme based on randomly

punctured quasi-cyclic-low density parity check codes , IET Commun., vol. 8, pp. 25562562, 2014.

[5] B. Mafakheri, T. Eghlidos, and H. Pilaram, Secure channel coding schemes based on polar codes, IACR

Archive, no. 2013/452, 2013.

[6] O. Collins and M. Hizlan, Determinate state convolutional codes, IEEE Trans. Commun., vol. COM41, pp.

17851794, 1993.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding:

Turbo codes, IEEE ICC93, pp. 10641070, May 1993.

[8] S.ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes, IEEE Trans.

Commun., vol. 49, pp. 17271737, Oct. 2001.

[9] R. Thobaben, EXIT functions for randomly punctured systematic codes, in proc. IEEE Inf. Theory

Workshop (ITW), pp. 2429, 2007.

[10] M. Peleg, I. Sason, S. Shamai, and A. Elia, On interleaved, differentially encoded convolutional codes,

IEEE Trans. Inform. Theory, vol.45, pp.25722582, Nov. 1999.

[11] T. J. Richardson and R. Urbanke, Thresholds for turbo codes, in Proc.Int.Symp. Inform. Theory, June 2000,

p. 319.

[12] E. Sharon, A. Ashikhmin, and S. Litsyn, EXIT functions for the Gaussian channel, in Proc. 40th Annu.

Allerton Conf. Communication,Control, Computers, Allerton, IL, Oct. 2003, pp. 972981.

