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ABSTRACT 

In this paper a theoretic investigation of transmission coefficient for symmetrical structures of four-quantum 

well  (GaAs/AlxGa1−xAs)  has been carried out using Transfer Matrix Method (TMM). The structures made of 

quantum wells and barriers with different Al content both in the wells and barriers creating different energy 

band diagram without applied bias. The result of change in Aluminum mole fraction in AlxGa1−xAs barrier 

region has been incorporated through variable effective mass in the Schrödinger time independent equation. 

The performance of transmission coefficients has been studied for the structure by changing the barrier height 

gradually increasing and decreasing. The effect of energy E on Transmission coefficients  considering tunneling 

effect is shown  for four well structures using TMM in MATLAB. 

Keywords- Transmission Coefficient, Transfer Matrix Method, MQW, symmetric, MATLAB  

I INTRODUCTION 

Currently, the buzzing word is the quantum confinement. Quantum effect that is planned to  trap carriers within 

a very tiny space is known as quantum confinement. For definite use or research we need to change the 

electrical or optical property of a material and the efficient way to do so is the quantum confinement [1]. Some 

novel devices based on heterostructures of this kind of material have been reported by Rogalski [2].  

Due to their diversity of technological usage, single and multiple semiconductor quantum-well structures have 

been widely studied in different situations [3] [4]. Based on mature III–V materials technology such as 

GaAs/AlGaAs structures, Quantum Well Infrared Photodetector (QWIP) structures have potential advantages 

promising high sensitivity, low power, low cost, high performance focal plane arrays and monolithic integration 

with high speed electronic devices [5]. 

In earlier works the double quantum well, triple quantum well has been studied thoroughly to give the idea 

about the behavior and characteristic of the different QWIP structures under different circumstances. Despite of 

the huge amount of reports on the fabrication and optical characterization of these devices, there have been a 

limited number of theoretical investigations of transport mechanism in more complex quantum well structures 

[6]. 



 
 

42 | P a g e  
 

Numerous approaches have been presented to solve the Schrodinger equation numerically. Two examples are 

the WKB approximation [7] and the variational calculations [8], [9]. Ghatak et al. [10] present a matrix method, 

for solving the Schrodinger equation in quantum-well structures, which in principle we have used here. In [11] 

the energy levels are found by the stabilization method of quantum chemistry. Furthermore, many methods 

associates with these difficulties are clumsy to implement. Two such examples are the Monte Carlo method [12] 

and the finite element method (FEM) [13], [14]. To implement algorithms based on these methods expert 

knowledge in computer science is required. The method used here, the TMM, is simple to implement and gives 

swift and exact answers to complex problems. 

In this paper, we present the theoretical study of some symmetrical four quantum well infrared photodetector 

structures, based on the GaAs/AlGaAs material system with adjustable Al concentrations in the quantum 

barriers. Transmission probability of four quantum well structure is numerically calculated using transfer matrix 

technique to find the possibility of resonant tunneling, and results are compared with each another structures 

which are similar type of structural parameters. Material composition of barrier layer are varied to witness the 

effect transmission for almost perfect result. 

 

II THEORITICAL MODEL 

 

To realize the physical properties of device structures, it is vital to simulate the expected performance on a 

computer. Here, we use Transfer Matrix Method for its simplicity and to provide a realistic precision. We have 

reviewed the variation of the effective mass and barrier height of AlGaAs barrier with aluminum concentration 

into the calculations. 

The typical Schrodinger equation can be written for each of the semiconductor layers is as follows: 
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Where, E is the energy of electron, in the well region conduction band potential is zero and effective mass of 

electron m∗ equal to mw and in the barrier region conduction band potential is V and m∗ is equal to mb. 
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Figure 1 Solutions to Schrödinger’s equation in a multiple quantum well 
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The energy E must be less than barrier height V, for the proper confinement of the electrons in the well. The 

Multiple Quantum Well (MQW) structures considered for the theoretic investigation for 4 wells is as shown in 

Fig. 1. The general solutions of the Schrodinger equation for this MQW structure in every region are as follows: 
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After choosing all the wells to be of the same depth, and all the barriers to be of the same height V, we can 

simplify that the wave vectors in quantum well and barrier region, k1 & k2 are constant all over the structure. 

Proceeding with continuity of wave function and its first derivative divided by the effective mass at the each 

interface of well and barrier region for 4 well structure as follows: 

Considering z=0 first, we have 
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Similarly, with z=a, 
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Proceeding with z=b, 
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With z=c, 
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With z=d, 
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With z=e, 
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With z= f, 
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With z= g, 
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Which can be rewritten more neatly in matrix form as: 
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Labelling the 2⨯2 matrix for the left-hand side of the n
th

 interface as M2n-1 and the corresponding matrix for the 

right hand side of the interface as M2n, n=1, 2, 3, etc., then the above matrix equations would become: 
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Now Eq. (36) gives: 
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and Eq. (37) gives: 
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and eventually 
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The product of the sixteen 2⨯2 matrices is still a 2⨯2 matrix; thus writing 
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To know the exact solution of the wave function we have to apply normalization condition which determines the 

unknown coefficients An and Bn in above equations. The probability interpretation of the wave function implies 

that the wave function must tend towards zero at the outer barriers, i.e. the coefficients of the growing 

exponentials must be zero. In this case, with the origin at the 1st interface (see Fig. 1), then this implies that 

1
B =0 and

9
A =0, and hence the second of the above equation would imply that M22 =0. As all of the elements 

ofM are function of 
1

k and 
2

k , which are both in turn functions of the energy E, then an energy is sought 

which satisfies the following condition: 

 ( ) 0E 22M   (51) 
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Once the energy is known through the standard numerical procedures, the coefficients 1A  to 9B follow simply 

and the envelope wave function has been deduced. Multiplying matrices together for the entire potential shape, 

the wave functions, and confined energies are calculated for the entire system. For systems where the states are 

not bound and properly confined, TMM can be used to calculate the transmission coefficients as 

   *

1
T E 

11 11M M
  (52) 

At this situation, 11M defines first matrix element, which is taken from matrix M and 
*

11M defines 

conjugate form of 11M . 

The reason behind using the Transfer Matrix Method is to get the electron energy precisely and to investigate 

the transmission coefficients alongside. The transmission coefficient is essential to examine the tunneling of the 

electron through the quantum well. The transmission coefficient has been a significant quantity as it delivers 

most of the relevant information of the transport process in MQW [6] [15]. 

 

III DEVICE STRUCTURE 

 
The device structures, which we study, is a four-well system, comprising of GaAs/AlxGa1−xAs quantum wells 

and barriers named as structure A, structure B, structure C and structure D where mole fraction, x, varies from 0 

to 0.43 and for the wells the mole fraction is constant at zero. The exact composition of all quantum barriers are 

given in Table 1. The consecutive device potentials (V) are given in Table 2. Here, z
b

n  (zn
w
) shows the distance 

of the left hand side of the n
th

 barrier (well) from origin [16]. The different structures from A to F which are 

designed and studied has been shown from Fig. 2 to Fig. 5 respectively. 

Table 1: Summary of composition used in the different structures 

 

Composition for Al (x) 

 Structure A Structure B Structure C Structure D 

First Barrier 33.9 0.43 0.43 0.43 

Second Barrier 33.9 0.16 0.37 0.16 

Third Barrier 33.9 0.43 0.26 0.26 

Fourth Barrier 33.9 0.16 0.16 0.37 

Fifth Barrier 33.9 0.43 0.43 0.43 

 

Table 2: Summary of calculated potential & thickness designed in the different structures 

V
b
n(V

w
n)[eV] 

n Structure A Structure B Structure C Structure D z
b

n(z
w

n)[Å] 

1 0.373(0) 0.473(0) 0.473(0) 0.473(0) 50(50) 

2 0.373(0) 0.176(0) 0.407(0) 0.176(0) 50(50) 

3 0.373(0) 0.473(0) 0.286(0) 0.286(0) 50(50) 

4 0.373(0) 0.176(0) 0.176(0) 0.407(0) 50(50) 

5 0.373(0) 0.473(0) 0.473(0) 0.473(0) 50(50) 
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IV RESULTS & DISCUSSION 

We have investigated thorough analysis of MQW (for n=4) structures in which well width and barrier width is 

of the order of nanometers. By using Eq.(53), the transmission coefficient of different symmetrical structures is 

computed for all the geometries when electric field is absent. The structure investigation for computation of 

resonant transmission probability is achieved by varying dimensional formation such as different well width 

(W.W.) and barrier width (B.W.) of 3.5nm, 5nm, 6.5nm and 8.5nm for all the symmetrical structures. 

It is also taken care that barrier potential is exclusively a function of the material parameters, and effective 

masses of barrier section and in well section have a mismatch as it depends on composition of Al in barrier 

sections. The result for structure A to D is shown in Fig. 6 to Fig 9 respectively. 

Fig. 6 gives the profile of transmission coefficient for structure A as function of energy for different well widths 

and barrier widths of the structure are considered identical and kept unchanged for the simulation purpose. For 

that structure, with increasing well width, tunneling probabilities can be estimated at lower energy values. 

In Fig. 7 we see that the tunneling probability becomes better in structure B in comparison to structure A as the 

transmission reaches near unity in lower energy. Due to the lower well width and barrier width, the structure A 

Figure 2 Potential energy profile of 

structure A with quantum wells at 

zero potential 

Figure 3 Potential energy profile of 

structure B with quantum wells at 

zero potential 

Figure 4 Potential energy profile of 

structure C with quantum wells at 

zero potential 

Figure 5 Potential energy profile of 

structure D with quantum wells at 

zero potential 
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has subband at lower energies. As, in structure A the well depth is greater the notches in the transmission 

probability becomes sharper. But in the structure B, well depth is not consistent and much less than in structure 

A, so the tunneling probability fluctuation is fewer and it achieves more transmission at lower energies. 

For the case of structure C & D, in Fig. 8 & 9, in both geometrics we see that, as the 2
nd

, 3
rd

 and 4
th

 barrier 

potential is lower than the 1
st
 and 5

th
 barrier, the lowest well width and barrier width provides maximum 

transmission probability at very low energy. But it takes more energy in structure D due to the increased barrier 

height in later stage of growth direction. 

 

Figure 6 Comparative profile of transmission coefficients as a function of energy for different 

B.W. & W.W. for structure A in absence of electric field 

 

Figure 7 Comparative profile of transmission coefficients as a function of energy for different B.W. & 

W.W. for structure B in absence of electric field 
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Figure 8 Comparative profile of transmission coefficients as a function of energy for different B.W. & 

W.W. for structure C in absence of electric field 

 

Figure 9 Comparative profile of transmission coefficients as a function of energy for different B.W. & 

W.W. for structure D in absence of electric field 
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V CONCLUSION 

The simulation is done using MATLAB.  Effect of different well width & barrier width is designed and 

analyzed theoretically on transmission coefficient in symmetrical 4-quantum well device with barrier potential 

variation. We can conclude that transmission coefficient is better obtained for the lowest well & barrier width 

structure due to the higher tunneling probability at lower energies. 

This investigation delivers the significant results to examine the behavior of complex quantum well structures, 

providing its applicability to define quantum confinement in multiple quantum well structures and will provide 

the information when the parameters are varied of the designs. 
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