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ABSTRACT 

Twin rotor MIMO system abbreviated as TRMS has high degree of non-linearity and cross-coupling between its 

inputs and outputs. Control of the TRMS is a challenging taskunless its appropriate model is available. Here, to 

obtain a model of 1DOF pitch of TRMSwe have used a black box system identification technique using input 

and output data sets.Appropriateness of the identified model isfurther validatedwith the aim of fulfilling the 

design requirement for the controller.Usually conventional feedback controllers fail to perform satisfactorily for 

TRMS due to variation in process dynamics and uncertainty in the nature of disturbances. To overcome the 

limitation of conventional fixed gain controllersModel Reference Adaptive Control (MRAC) scheme is reported 

here using modified MIT rule. Superiority of MRAC in comparison to PID controller has been verifiedfor TRMS 

through simulation results as well as real time experimental verification. 
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I. INTRODUCTION 

 

Research on improved controlling of aircraft has gained importance in recent years. The twin rotor MIMO 

system (TRMS) resembles the laboratory prototype of helicopter dynamics with significant cross coupling 

between the longitudinal and lateral axes.Finding out an appropriate model of TRMS is essential to accomplish 

a better control policy for it. Lagrangian approach to derive a mathematical model of TRMS is utilized in [1].In 

[2] analytical approaches in conjunction with neural networks based empirical approaches are used to derive 

dynamic models for 1DOF TRMS. But, the flight mechanics are not always easy to establish from first 

principles for aircraft modeling. However, these equations are imperative for designing and studying flight 

control systems. A large number of works [3, 4]are reportedin literature addressing parameter estimation 

techniques for conventional aircraft.  

We know that to design aneffective controller,ideally a true model of the plant is needed. Hence, model 

identification is an integral part of controller designing for TRMS.But,finding out the appropriate model of a 

TRMS is difficult task due to its non-linear behaviour and cross couplingeffects. We know thatfirst principle 

based modeling approach requires considerable knowledge about plant dynamicswhich is not straight forward in 

case of TRMS. Hence, black box based system identification technique is a good alternative for modeling of 

TRMS[5] where both model structure and model parameters are unknown.Here, we perform the model 

identification and validation ofmain rotor or pitch dynamics of a 1DOF TRMS. Then, based on the identified 

model we attempt to controlthat 1DOF TRMS by using MRAC scheme. 



 

252 | P a g e  

A widevariant of control strategies [6-9]for controlling the TRMS towards achieving improved performances 

arereported by researchers. A hybrid fuzzy PID controller is developed in[10]. The result obtained from this 

hybrid fuzzy PID controller seems to outperform a fixed gain conventional PID controller. The common 

objective of all the researchers towards designing a controller for TRMS is to overcome its nonlinearity issues. 

The nonlinearity occurs because of the variation in process dynamics due to nonlinear actuators, changes in 

environmental conditions and variation in thecharacter of the disturbances and the controller ought to be 

adaptive and robust to accommodate these changes. 

To overcome the limitations of conventional fixed gain controllers, researchersdeal with the designing of 

adaptive   controllers for a TRMS. Among the various adaptive mechanismsMRAC scheme using the MIT rule 

[11-13] is an effective technique. The designed MRAC controller gives satisfactory results, but is very sensitive 

to the changes in the amplitude of the command signal. So, here we employ theMRAC scheme that uses MIT 

rule along with the normalized algorithm to handle the variations in the reference signal amplitude and this 

adaptation law is referred as modified MIT rule.Performance based comparative analysis is made between 

MRAC and conventional fixed gain PID controller for controlling the TRMS in Matlab/Simulink environment. 

Simulation results illustrate that our proposed MRAC shows better tracking as well as improveddisturbance 

rejection performance with lesser control effort compared to PID controllers. In addition to simulation results 

real time experimental study further substantiates the superiority of MRAC scheme. 

 

II. EXPERIMENTAL SETUP 

 

TRMS plant consists of a tower with a beam attached by two bearings. These two bearings allow the beam to 

move freely in the horizontal and vertical planes within some limits. At the two ends of the beam, rotors are 

attached which are physically shifted from each other allowing them to generate horizontal and vertical 

thrusts. A beam with a counterweight is attached to the housing of the bearings. This counter weight is used to 

change the equilibrium position of the TRMS, and it also dampens the dynamics of the system. The main beam 

is locked so it cannot roll. The rotor generating vertical thrust is called the main rotor. This enables the pitch 

motion in the vertical plane. The rotor generating the horizontal thrust is called the tail rotor. This enables the 

plantyaw motion which is the rotation in the horizontal plane.Locking screws are provided to prevent the motion 

either in vertical or horizontal planes and then it is known as 1DOF TRMS. To interface the TRMS plant with 

PC, a PCL-812 I/O board is used. The interfaced PC is equipped with Matlab/Simulink software. Control 

algorithms are implemented through Simulink for real time experimentation [14]. The laboratory set-up of 

TRMS is shown in Fig. 1. 
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Fig.1: Laboratory set-up of TRMS. 

 

III. SYSTEM IDENTIFICATION 

 

System identification is an integral part of control system engineering that determines physical characteristics of 

a plant and represents them in the form of mathematical expression by using real time experimental data. 

Usually statistical methods are used to build mathematical models of dynamical systems from the measured 

data. Due to the complexity and diversity of the real system, the actual modelling problem from data acquisition 

stage to model establishment is a difficult task to complete by manual labour. The system identificationtoolbox 

of Matlab can simplify the calculation process and improve the efficiency of identification. So the system 

identification toolbox of Matlab is an effective way of estimating the models for systems that are difficult to 

handle manually. System identification toolbox constructs mathematical models of dynamic systems from 

measured input-output data and it is based on black-box approachwhich doesn’t assume anything about the 

actual plant and thus gives a good estimate of the plant’s characteristics. 

 The models developed from statistical methods provide an approximate behaviour of the real plant but it is 

good enough for control purposes. Flowchart of system identification process is shown in Fig.2.After collecting 

an experimental data set, most essential stages of model identification process involves (i) selectionof 

parametric or non-parametric modelling technique and choice ofthe model structure, (ii) model estimation and 

finally (iii) model validation [20]. 

The model structure options provided for parametric identification are auto-regressive exogenous(ARX), auto-

regressive moving average exogenous (ARMAX), Box-Jenkins (BJ)and state space model [15].After 

choosingARMAX technique with appropriate model structure, estimation of plant is carried out using plant 

input-output data. The objective of model estimation is to minimize the error function between measured and 

predicted output. Model validation is vital to find out the model credibility whetherthe model is capable to 

produce measured data or not. It can be achieved by examiningthe model fitting and auto-correlation analysis of 

residual function between input and output. 
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Fig. 2: Flowchart of system identification. 

IV. IDENTIFICATION RESULTS 

 

To find out a model of the TRMS plant a mixed sinusoidalsignal of varying frequencies are usedto produce a 

desired excitation signal [14]. After providing excitationto the plant both the input and outputexperimental data 

sets are collected which are exploited through system identification toolbox [16] to estimate a model for TRMS. 

4.1 Experimental data 

In this work real time experimental data sets are collected through the interfaced PC from the TRMS according 

to the guideline given in [14]. 1000 input-output data points are used for estimation of parameters for the pitch 

input u1 (volt) and the output pitch angle y1 (rad). First we load the pitch measurement data such as input 

voltage, sampling time, and output angle in toolbox and then initialize input and output as vectors in MATLAB 

work space.Initialvalues are considered as zerofor both input and output data array. 
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Fig. 3: Real time measured input-output data before and after removing mean. 

The choice of sampling time is very crucialboth for identification and control. Since the TRMS plant dynamic 

response is relatively slow, for this reason, the identification of the discrete model is carried out with the 

sampling time of Ts = 0.1s [14].Fig. 3 shows the time domain representation of observed data; both pitch angle 
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y1 and input voltage to the rotor u1 is plotted during entire identification period 0 to 100s resulting 1000 samples. 

Thereafter the mean value is subtracted from the measurement data to remove offset. 
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Fig. 4: Estimation and validation data set. 

 

Finally, the entire measurement data is divided in two parts, keeping the first part reserved for estimation and 

other for validation. Half of data set i.e. first 500 samples is selected for estimation and the rest 500samples is 

reserved for validation. Fig. 4 shows the estimation and validation data sets for both input and output. The 

estimation data is used as an input, and these data sets are input to the model estimator to predict the model as 

reported in [15].  

4.2 Selection of model structure 

We choose parametric model identification technique which usually provides complete model description that 

truly describes the actual dynamics of the plant. The basic disadvantage with the simple model structure like 

ARX has the limitation in describing the effects of the disturbance term. To accommodate the contribution of 

noise term ARMAX model structure is selected [15].This structure is used to get an initial estimateof 1DOF 

pitch model of TRMS plant [16-18]. In this model structure the current plant output is a function of previous 

outputs (auto regressive part, ), previous inputs (exogenous part, ) and current and previous 

noise terms (moving average part, ) [15, 20]. ARMAX models can be described by the form as given 

in Eq. (1). 

 

 

Eq. (1) can be rewritten, 

 

where q is the shift operator. 
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4.3 Model estimation 

The best fit estimated model equation of the ARMAX along with the A(q) and B(q) polynomials are given by 

 

 

 

Here we transform the discrete model into their continuous equivalent form is given below: 
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Fig. 5: Pitch model validation. 

4.4 Model validation 

Once a model of the system is obtained, it is required to verify whether the model is good enough to represent 

the systemdynamic behaviour or not. If not, the model structure should be changed and the parameters need to 

be re-estimated.In this context a number of validation tests are available in the literature[6, 21]. Here we apply 

model estimation and validation techniques by evaluating model performance based upon the following 

performance criteria: (i) minimizing final prediction error (FPE) and loss function (LF), (ii) choosing 

modelstructure which provide highest percentage of model fit, (iii) auto-correlation analysis of residual for 

output should be inside the confident region [21]. 

Data set not used in estimation (501 to 1000 samples) is selected for validation in order to ensure that there is 

norisk of over-fitting, this is called cross-validation.Henceforth, validation is performed for linear parametric 

models by checking how well the simulated or predicted output of the model matches the measured output.A 

plot is shown in Fig. 5 which shows the validation data (usually the working data) and the predicted values on 

the same plot each as a time serieswith the list of active models.  
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It is required to choose the best mathematical model for 1DOF pitch of TRMS by analysing all performance 

parameters. It can be observed that amx3321 model provide best fit up to 58.19 % with low FPE and LF 

compared to other ARMAX models. Itisto mention that amx3321 model structures passed other validation 

tests.Fig. 5 shows best fit between measured and estimated output at different polynomials orders. Best result is 

achieved, when order is selected 3, 3, 2 for A(q), B(q) and C(q) polynomials respectively.Table I shows the 

different percentage fit of the estimated models.  

Table I 

Model Loss function FPE Best fit 

amx3321 0.0070338 0.007260 58.19 % 

amx4321 0.0169295 0.017539 51.11 % 

amx5541 0.0095624 0.009600 56.82 % 

amx6621 0.0079233 0.007955 55.29 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, model validation is done in comparison with a reference model considering as standard. Here we 

take reference model provided in [14] and compare its responses with our identified model by examining the 
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Fig. 6: Performance comparison with a reference model. 
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Fig.7: Error between two responses. 
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error that should be as small as possible. Fig.6 showsresponses of the reference model and identified model and 

the related error between two response shows in Fig.7. Results indicate that the proposed identification model 

can closely follow the dynamic behaviour of the 1DOF pitch motion of TRMS. 

Another useful validation test is the residual analysis, which generates an autocorrelation plot. Here, the goal is 

not to have any significant autocorrelation remaining in residuals.Fig. 8 illustrates the auto-correlation of 

residual for the identified ARMAX model. 

It can be found that the residual is within the confident range (-0.1 to 0.1) for those ARMAX models that fit up 

to 58.19%, ensuring that residuals are not correlated and independent from past input for the desired polynomial 

order. 

-20 -15 -10 -5 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2

Samples

Autocorrelation of residuals for output y1

 

FIG.8: AUTOCORRELATION ANALYSIS OF ARMAX MODEL. 

V. MODEL REFERENCE ADAPTIVE CONTROL (MRAC) 

5.1 Principle of MRAC 

 

 

Fig. 9: Block diagram of MRAC. 

The general idea behind the model reference adaptive control (MRAC) [11, 22] is that to design a closed loop 

controller with parameters which can be updated to modify the response of the system in the desired manner. 

The output of the system is compared with the response of a reference model. It generates an error and the 

controller parameters are updated based on this error. The goal is for the parameters to converge to ideal values 

that cause the plant response to match the response of the reference model. 
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5.2 Components of MRAC 

 Reference model: It is used to give an ideal response of the adaptive control system to the reference input. 

 Controller: It is usually described by a set of adjustable parameters. In this paper two parameters  and 

 are used to describe the control law. The value of  and  are primarily dependent on adaption gain. 

 Adjustment mechanism: This component is used to alter the parameters of the controller so that plant 

could track the reference model. Mathematical approaches based on MIT rule isemployed to develop the 

adjustment mechanism. In this paper we are using MIT rule with normalized algorithm and the technique 

is then referred as modified MIT rule. The basic block diagram of MRAC system is shown in the Fig. 9.  

5.3 MIT rule 

The MRAC control strategy is obtained using negative gradient approach of MIT rule. According to gradient 

approach, a cost function  is decided in terms of tracking error  as shown below. The tracking error is 

defined as difference between output of reference model and plantoutput.  

 

 

According to the MIT rule, rate of change of  is directly proportional to negative gradient of cost function, as 

shown in Eq. (10) 

 

where = controller parameter vector, = tracking error,  = adaptation gain and = sensitivity derivative. 

Sensitivity derivative determines how the parameter will be updated. A controller may contain several 

parameters that require updating. 

5.4 Normalized MIT algorithm  

For large values of reference input, system may become unstable when the system is controlled by MRAC using 

MIT rule because it is very sensitive to the changes in the amplitude of the reference input. Hence to overcome 

this problem, normalized algorithm is used to the MIT rule to develop the control law. 

Normalized algorithm modifies the adaptation law in the following manner 

 

where  and ( >0) is introduced to remove the difficulty of zero division when is small. 

Eq. (11) is also applicable in the conditions when there is more than one adjustable parameter. With the above 

modifications using normalized algorithm, the adaptation law is referred as modified MIT rule [23]. 
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Another important fact for designing MRAC is selection of an appropriate reference model. Normally, the 

reference model is so selectedby the designer that it offers the desirableresponse from the system under all 

possible operating conditions.  

VI. SIMULATION RESULTS 

 

Simulation study is made with linearized plant model obtained from the model identification experiment and 

designing ofMRAC controller is performed based on this model. Simulation experiment is realized in 

Matlab/Simulink environment using modified MIT ruleand the resultant MRAC scheme is applied on identified 

model of 1DOF TRMS. 

Here we use a mixed sinusoidal signal with different frequencies for the command signal of pitch 

position . We have compared the performance of the designed MRAC with the conventional fixed 

gain PID controller. The results are obtained with and without of unknown disturbance to the system. The 

performance of the two controllers are evaluated and compared in terms of set point tracking and disturbance 

rejection. The performance indices IAE (Integral Absolute Error), ITAE (Integral Time Absolute Error) are 

computed to demonstrate the superiority of MRAC over conventional PID controller.  

6.1Tracking performance 

The designed MRAC controller is now tested in terms of reference signal trackingperformance.Performances 

obtained from MRAC and PID controllersduringset point tracking for controlling only pitch motion of TRMS is 

shown Fig. 10 and Fig. 11 respectively. 
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Fig. 10: MRAC response of 1DOF pitch. Fig. 11: PID response of 1DOF pitch. 

6.2 Disturbance rejection performance 

Performance of MRACalong with conventional PID controller is tested in presence of load disturbance. The 

load disturbance is introduced by adding a band limited white noise and pulse having magnitude 0.2 rad. 

Comparative results between MRAC and PID controllersduringdisturbance rejection performance for 

controlling 1DOF pitch motion of TRMS is shown Fig. 12 and Fig. 13 respectively.performance indices for both 

the controller during tracking andload rejection phases are depicted in Table II. 
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Fig.12: MRAC response of 1DOF pitch in presence 

of white noise and disturbance. 

Fig.13: PID response of 1DOF pitch in presence of 

white noise and disturbance. 

Table II 

 

 

 

 

 

 

 

VII. Real time experimental results 

 

The performance of MRAC is also tested on a hardware based TRMS platform. Performance of MRAC 

controller whichis already reported in previous sectionis compared to PID controller used for controlling vertical 

motion (pitch) of TRMS. For this experimentation mechanical locking screw is used to prevent any horizontal 

motion and as a result 2DOF TRMS acts as a 1DOF system.  

7.1 Real time tracking performance 

The designed MRAC along with conventional PID controller is now tested during tracking of pitch motion 

andthe corresponding responses are shown Fig. 14 and Fig. 15respectively. 
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Fig. 14: MRAC response of 1DOF pitch. Fig. 15: PID response of 1DOF pitch. 

 

1DOF Pitch 

IAE ITAE TV 

PID MRAC PID MRAC PID MRAC 

Set point tracking  
2.49 1.87 84.30 82.46 0.43 0.35 

Disturbance Rejection  
4.10 3.27 182.90 172.70 4.24 2.68 
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7.2 Disturbance rejection performance 

In addition to tracking performance MRAC controller is also tested with load disturbance. The load disturbance 

is introduced by adding a band limited white noise and pulse having magnitude 0.2 rad. Responses of 

MRACand PID controllerduringdisturbance rejection phases of1DOF pitch motion of TRMSis shown Fig. 16 

and Fig.17 respectively.Controller performance indices (IAE, ITAE and TV) are calculated during tracking and 

load rejection phases for both the MRAC and PID controllers as depicted in Table III.Lesser values of 

performance indices for MRAC establish the superior behaviour for MRAC compared to fixed gain PID 

controller. 
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Fig.16: MRAC response of 1DOF pitch in 

presence of white noise and disturbance. 

Fig.17: PID response of 1DOF pitch in presence of 

white noise and disturbance. 

Table III 

 

 

 

 

 

 

VIII. CONCLUSION 

 

In this paper reported work concerns with system identification techniques to chooseappropriate mathematical 

model that would be suitable to realize physical behaviour of a highly nonlinear system. A model for the 1DOF 

Pitch of twin rotor MIMO system is successfully identified. The extracted model is able to predict the system 

behaviour close to the actual one. Here we identified a low order linear ARMAX model which replicates higher 

order nonlinear model of 1DOF pitch motion. Clearly we can findthemodelling limitation that the percentage of 

best fit is not more than 60 %. But,if we choose other model structures for better percentage fitness it results 

increased complexity and orders. Using the identified model performance of a MRAC scheme is verified and its 

performance is compared to a conventional fixed gain PID controller. During both the tracking and load 

rejection phases MRAC is found to provide improved performance during both the simulation and real time 

evaluation compared to conventional PID controller. Effectiveness of MRAC is also established in presence of 

 

1DOF pitch 

IAE ITAE TV 

PID MRAC PID MRAC PID MRAC 

Set point Tracking  2.80 3.29 106.20 77.63 3.07 1.41 

Disturbance Rejection  5.77 5.10 276.50 194.20 13.24 6.07 
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noisy measurement output. Performance of the designed MRAC can also be evaluated on a 2 DOF application 

of TRMS involving both the pitch and yaw motions simultaneously.  
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